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Remote nucleation and stationary domain walls via transition waves in tristable
magnetoelastic lattices
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We present a magnetoelastic lattice in which a localized external magnetic field, generated by an assembly
of fixed magnets, tunes the potential landscape to create monostable, bistable, and tristable configurations.
Focusing on the tristable potential, we numerically and experimentally confirm the existence of three distinct
types of transition waves, each characterized by unique amplitudes and velocities, and establish a scaling law that
governs their behavior. We also examine how these transition waves interact with the system’s finite boundaries.
Furthermore, by adjusting the potential symmetry through the localized external field, we investigate wave
collision dynamics. In lattices with asymmetric potentials, the collision of similar transition waves leads to the
remote nucleation of a third phase. In symmetric potentials, the collision of dissimilar transition waves results in
the formation of a stationary domain wall, with its width tuned by the shape of the tristable potential well.
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I. INTRODUCTION

Transition waves play a crucial role in various material
processes, such as dislocation dynamics, where defects prop-
agate through crystal lattices [1], and phase transitions in
advanced materials such as ferroelectrics [2], ferromagnets
[3], and shape memory alloys [4]. These waves are charac-
terized by moving boundaries, referred to as phase boundaries
or domain walls, which separate regions where the material
exists in different phases. As the transition wave propagates,
these boundaries shift, causing material elements to switch
from one phase to another. Extensive theoretical studies have
explored these waves in systems with nonconvex energy land-
scapes, where multiple stable equilibria exist, driving the
sequential transition of elements from one equilibrium state
to another [5–13].

Similar phenomena have emerged in metamaterials in re-
cent years, where macroscopic mechanical systems exhibit
multiple stable equilibria [14,15]. By finely adjusting poten-
tials and degrees of freedom, precise control over transition
waves is achieved in metamaterials, enabling the design of
reconfigurable structures with applications in soft robotics
[16,17], energy absorption [18], deployable structures [19],
and sound control [20,21].

Initially, research into transition waves in metamaterials
primarily focused on bistable unit cells with asymmetry suf-
ficient to compensate for the system damping and make
the transition wave sustainable [22–27]. However, recent de-
velopments have expanded this design space by integrating
magnetic elements into metamaterial lattices, enabling the
realization of systems with more than two stable equilib-
ria [28,29]. This has led to novel observations, such as the
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formation of stationary domain walls through the collision of
two transition waves [28], a mechanism distinct from bistable
lattices, which require additional defects to achieve similar
outcomes [30,31]. Furthermore, magnetic elements enable in
situ tuning of the system’s potential energy landscape using
an external magnetic field, without requiring physical changes
to the lattice geometry. This provides more precise control
over transition wave propagation and facilitates the creation
of more adaptable and functional designs [32].

Despite these advancements, a systematic design strategy
for creating metamaterials with multiple stable equilibria us-
ing only external magnetic fields is still lacking. Such systems
could allow for real-time tuning of the potential landscape—
whether monostable, bistable, or tristable—without requiring
changes to the metamaterial’s geometry. This flexibility would
support a wide range of wave dynamics. Notably, wave be-
havior in tristable configurations remains underexplored in the
literature. Key open questions include the following: (1) How
many types of transition waves can such lattices support, and
is there a universal law governing their characteristics? (2)
How do these waves interact with finite boundaries? (3) What
happens when different transition waves collide?

In this work, we demonstrate how a localized external mag-
netic field, generated by an assembly of permanent magnets,
can tune the potential landscape of a metamaterial lattice, en-
abling monostable, bistable, and tristable behavior. We focus
on the tristable configuration, where experimental observa-
tions reveal the existence of three distinct transition waves.
We validate with experiments a scaling law relating wave
velocity to power dissipation, as theoretically predicted in ear-
lier studies [33]. Additionally, we investigate how boundary
conditions affect these transition waves.

We further explore the collision dynamics of transition
waves in both symmetric and asymmetric potentials, ad-
justable via the localized magnetic field. For asymmetric
potentials, we show that two transition waves initiated from
opposite ends collide, nucleating a third phase. Finally, for
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FIG. 1. Experimental setup. (a) One-dimensional lattice assem-
bly where the on-site potential is induced by fixed magnets. Moving
masses are the sliding beams. (b) Top view of the unit cell, compris-
ing three fixed magnets and one moving magnet attached beneath
the sliding beam. (c) As per the discrete element model (DEM),
the depths of the fixed magnets (d1, d2, and d3) create a multistable
on-site potential for the moving magnet.

symmetric potentials, we experimentally demonstrate that the
collision of two transition waves results in the formation of
a stationary domain wall. Our findings reveal a previously
unexplored correlation between the width of the domain wall

and that of the colliding transition waves, governed by the
shape of the tristable potential.

II. EXPERIMENTAL SETUP

We design a lattice comprising ten unit cells, each consist-
ing of a sliding beam (aluminum) connected to its neighbors
via axial springs (phosphor bronze), as depicted in Fig. 1.
The structure rests on a solid acrylic base supported by a
pair of aluminum extrusions, housing the linear guide rail
and bearing assembly (MGN7C, HIWIN). Underneath each
beam is a Neodymium (N-52) permanent magnet, referred to
as a “moving magnet,” as it moves along the x axis with the
beam. Three magnets are affixed to the acrylic base for each
unit cell, spaced at a distance a = 20 mm between them. All
the permanent magnets are spherical of a radius of r = 5 mm
and uniformly magnetized along the out-of-plane direction (z
axis). The unit cells are adequately spaced, with a distance
l = 120 mm between them, ensuring that the moving magnets
primarily interact with the three fixed magnets within their re-
spective unit cells. By individually rotating the fixed magnets,
we alter their depths (d1, d2, and d3) and change the localized
magnetic field, thus adjusting the effective on-site potential
experienced by the moving magnet. For the measurements,
we employ a laser Doppler vibrometer (Polytec single-point
LDV) to detect the displacement of each moving mass.

III. NUMERICAL MODELING

A. Nonlinear on-site potential

First, we model the magnetic interaction between moving
and stationary magnets within a unit cell. Since all magnets
possess uniform magnetization ms and are spherical with
radius r, we derive the interaction energy, a function of u,
the axial displacement of the moving mass, using Maxwell’s
equations [refer to Supplemental Material [34] (Sec. I) and
also Refs. [35,36] therein for details]:

E (u) = 4πm2
s

9μ0
r6

[(
1[

(u + a)2 + d2
1

]3/2 − 3d2
1[

(u + a)2 + d2
1

]5/2

)
+

(
1(

u2 + d2
2

)3/2 − 3d2
2(

u2 + d2
2

)5/2

)

+
(

1[
(u − a)2 + d2

3

]3/2 − 3d2
3[

(u − a)2 + d2
3

]5/2

)]
, (1)

where μ0 = 4π × 10−7 Vs/Am denotes vacuum permeabil-
ity. The magnetization of all N-52 magnets is considered as
ms = 0.8 T. Additionally, the depths of fixed magnets d1,
d2, and d3 are adjustable to modify the interaction energy
landscape, as illustrated in Fig. 2. We maintain d2 constant
and examine the energy landscape’s behavior as d1 and d3

vary. Figure 2(a) demonstrates the possibility of monostable,
bistable, and tristable potential landscapes for various depth
combinations. We focus on the tristable regime, presenting
two distinct tristable landscapes, one asymmetric and the other
symmetric about u = 0, depicted in Figs. 2(b) and 2(c), re-
spectively. In the later sections, we will analyze transition
waves that facilitate system switching across three differ-

ent phases (corresponding to three local minima), namely,
Phase 1, Phase 2, and Phase 3.

B. Equations of motion

We employ the discrete element method (DEM) to simulate
the dynamics of our system. Sliding beams with moving mag-
nets are treated as lumped masses interconnected by linear
springs. To simplify calculations, we assume a significantly
higher bending rigidity for the beams, neglecting out-of-plane
motion along the z axis for the moving mass. The derivative of
the nonconvex on-site energy, previously calculated, serves as
a measure of the on-site force acting on the moving magnets.
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FIG. 2. (a) Phase diagram of the on-site potential as a function
of d1 and d3, for fixed a = 20 mm and d2 = 15.3 mm. (b) Asym-
metric tristable on-site potential considered for the experiment,
(d1, d3) = (18, 10.4) mm. (c) Symmetric tristable on-site potential
considered for the experiment (d1, d3) = (12, 12) mm. Energy dif-
ferences between different stable states are highlighted. Arrows
denote different types of transition waves between Phase 1, Phase
2, and Phase 3.

Consequently, the equation of motion for the nth unit cell is
given by

mun,tt − k(un−1 − 2un + un+1) + E ′(un)

− c1(u(n−1),t − 2un,t + u(n+1),t ) + c2sgn(un,t ) = 0, (2)

where m represents the mass of the moving assembly, k de-
notes the linear stiffness of the springs, and c1 and c2 are
intersite and on-site damping parameters, respectively. Vari-
ables following a comma in indices denote partial derivatives.
As the moving mass slides on the guide rails, we utilize a
dry friction damping model for the on-site term and a viscous
damping model for the springs.

C. Scaling law for transition wave

In this section, we derive the scaling law for transition
waves propagating in the system with velocity ν. We thus as-
sume un(t ) = u(nl − νt ) ≡ u(ξ ) and substitute it into Eq. (2)
to yield

mν2u,ξξ − k(u(ξ − l ) − 2u(ξ ) + u(ξ + l ))

+ E ′(u) + c1ν[u,ξ (ξ − l ) − 2u,ξ (ξ ) + u,ξ (ξ + l )]

− c2ν sgn(u,ξ ) = 0. (3)

Equations are thus transformed into a traveling frame of ref-
erence ξ . Multiplying Eq. (3) by u,ξ and integrating over the
real ξ axis, we obtain∫ ∞

−∞
[mν2u,ξξ − k(u(ξ − l ) − 2u(ξ ) + u(ξ + l ))

+ E ′(u) + c1ν(u,ξ (ξ − l ) − 2u,ξ (ξ ) + u,ξ (ξ + l ))

− c2ν sgn(u,ξ )]u,ξ dξ = 0. (4)

If the transition wave changes the system from the initial
phase ui at t → −∞ (ξ → ∞) to u f at t → ∞ (ξ → −∞),
we impose u(ξ → ∞) = ui and u(ξ → −∞) = u f . Fur-
thermore, for a dissipative system, the wave profile would
reach a steady state at t → ∞, implying u,ξ (ξ → −∞) = 0.
Since the system was initially at rest, we also have
u,ξ (ξ → ∞) = 0. Upon examining the individual integrals in
Eq. (4), we find∫ ∞

−∞
(mν2u,ξξ )u,ξ dξ =

∫ ∞

−∞

mν2

2

d

dξ
(u,ξ )2dξ = 0. (5)

Next we compute the integral

I =
∫ ∞

−∞
{k[u(ξ − l ) − 2u(ξ ) + u(ξ + l )]}u,ξ dξ .

The second term of I reduced as

− 2k
∫ ∞

−∞
u(ξ )u,ξ dξ

= −k
∫ ∞

−∞

d

dξ
(u(ξ ))2dξ = −k

(
u2

i − u2
f

)
. (6)

We define η = ξ − l and subsequently the first term of I can
be rewritten as∫ ∞

−∞
ku(ξ − l )u,ξ (ξ )dξ =

∫ ∞

−∞
ku(η)u,η(η + l )dη. (7)

Since η is a dummy variable, this can be rewritten as∫ ∞

−∞
ku(η)u,η(η + l )dη =

∫ ∞

−∞
ku(ξ )u,ξ (ξ + l )dξ . (8)

Therefore, the first and third terms of I are deduced to∫ ∞

−∞
{k[u(ξ − l ) + (ξ + l )]}u,ξ dξ

= k
∫ ∞

−∞
[u(ξ )u,ξ (ξ + l ) + u(ξ + l )u,ξ (ξ )]dξ

= k
∫ ∞

−∞

d

dξ
[u(ξ )u(ξ + l )] = k

(
u2

i − u2
f

)
. (9)
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Combining Eqs. (6) and (9), the integral I = 0. Finally, the
term in Eq. (4)∫ ∞

−∞
E ′(u)u,ξ dξ = E (ui ) − E (u f ) = �E . (10)

Therefore Eq. (4) reduces to

�E =
∫ ∞

−∞
[−c1ν(u,ξ (ξ − l ) − 2u,ξ (ξ ) + u,ξ (ξ + l ))

+ c2ν sgn(u,ξ )]u,ξ dξ . (11)

Multiplying both sides with ν/l , approximating the right-hand
side by a discrete system, we obtain

ν�e �
N∑

n=1

[−c1(un−1,t − 2un,t + un+1,t )

+ c2sgn(un,t )]un,t ≡ Pd , (12)

where �e ≡ �E/l represents the change in on-site energy
per unit length. The right-hand side denotes the total power
dissipated (Pd ) by viscous and Coulomb damping. Due to
discreteness, Pd oscillates in time with a period T = l/ν [see
Supplemental Material [34] (Sec. II) for details]. Therefore,
we compute the time-averaged Pd as

〈Pd〉 = 1

T

∫ t0+T

t0

Pd dt, (13)

and we modify the scaling law as

ν�e � 〈Pd〉. (14)

A similar scaling law can be found in the work of Nad-
karni et al. [33]. However, we have validated this prediction
for the simultaneous presence of nonlinear on-site damping
and linear intersite damping in our system. Since the power
dissipated on the right-hand side is always positive due to
the second law, we can conclude that ν�e � 0, which is
analogous to the entropy condition derived in Ref. [7], with
�e acting as the driving force on the phase boundary propa-
gation. In our tristable lattice, the scaling remains independent
of interparticle stiffness. Furthermore, the specific topology
of the on-site potential does not affect the scaling law; in-
stead, it depends on the initial and final configuration of the
energy state.

IV. RESULTS AND DISCUSSIONS

In this section, we focus on tristable configurations and
present both numerical and experimental results addressing
four key aspects: (1) the formation of transition waves, (2) the
influence of boundary conditions, (3) nucleation behavior, and
(4) the existence of stationary domain walls.

A. Formation of transition waves

We perform experiments on a chain comprising ten unit
cells with an asymmetric tristable on-site potential, as de-
picted in Fig. 2(b). Due to asymmetry in the well, we expect
several sustainable transition waves propagating in the lattice.
These wave profiles are also referred to as kinks or antikinks
[37], and manifest as localized wave packets propagating with

a constant shape. We identify three distinct types of transi-
tion waves: (i) 1 → 2, with the transition from Phase 1 to
Phase 2; (ii) 2 → 3, with the transition from Phase 2 to
Phase 3; and (iii) 1 → 3, with the transition from Phase 1 to
Phase 3. Note that transition waves, such as 3 → 1, 3 → 2,
or 2 → 1, are energetically not favorable as the final state is
at higher energy, which enhances the effect of dissipation and
leads to the absence of a sustainable transition wave [14].

First, we consider a scenario where all unit cells are in
the highest energy state, i.e., Phase 1, and both ends of the
chain are fixed. We rely on prestraining the first spring and
releasing its strain energy so that we can initiate the transition
wave in a controlled and repeatable manner. The prestrain is
introduced by snapping the first unit cell into Phase 2 and
fixing it in place while restraining the second unit cell, caus-
ing the spring between them to develop compressive strain.
When the second unit cell is released, the transition wave is
initiated. We observe a large-amplitude nonlinear wave prop-
agating through the lattice, transitioning each unit cell from
Phase 1 to Phase 2 as shown in Fig. 3(a). The spatiotempo-
ral map of the displacement is plotted in Fig. 3(b), clearly
indicating the propagation of the 1 → 2 transition wave. Sim-
ilarly, we conduct experiments and observe 2 → 3 and 1 → 3
transition waves as shown in Figs. 3(c) and 3(d), respectively.
We also conduct numerical simulations on longer chains with
100 unit cells [see Supplemental Material [34] (Sec. II) for
details]. We confirm that all types of transition waves are
sustainable in these longer chains. This further demonstrates
the fact that the asymmetries in the potential wells lead to
energy gain after each snapping of unit cells, which compen-
sates for the energy lost due to damping and thus facilitates a
sustainable propagation of transition waves [23,28].

Furthermore, experimental data is utilized to fine-tune the
damping parameters of the numerical model, with values of c1

as 0.05, 0.1, and 0.001 N s/m, and c2 as 0.11, 0.13, and 0.2 N
for 1 → 2, 2 → 3, and 1 → 3 transition waves, respectively.
The insets of Figs. 3(b)–3(d) show the comparison of temporal
dynamics measured experimentally and modeled numerically.

From Figs. 3(b)–3(d), we observe that the 1 → 2,
2 → 3, and 1 → 3 transition waves reach the end of the
chain at approximately 0.32, 0.42, and 0.27 s, respectively.
This means that the 1 → 3 transition wave has the highest
velocity, while the 2 → 3 transition wave has the lowest.
This can be explained using the scaling law derived in
Eq. (14), which relates the velocity of a transition wave (ν)
to the dissipated power (〈Pd〉) and the energy difference (�e)
in the on-site potential. In Fig. 3(e), we plot 〈Pd〉 against
ν�e from both experimental and numerical results. The data
points lie on a straight line with slope 1, confirming the
validity of the scaling law. In our system, the power dis-
sipated by the different transition waves follows the order
〈Pd〉1→3 > 〈Pd〉2→3 > 〈Pd〉1→2. However, the energy differ-
ence also follows the relation �e1→3 > �e2→3 > �e1→2.
Consequently, the wave velocity (ν), which depends on the
ratio 〈Pd〉/�e, follows the order ν1→3 > ν1→2 > ν2→3 for this
particular setup.

To the best of the authors’ knowledge, the 1 → 3 tran-
sition wave, which progresses directly from Phase 1 to
Phase 3 without stabilizing at the intermediate state, has
not been previously documented in the literature. We further
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FIG. 3. Three types of transition waves. (a) Snapshots from experiments demonstrating the 1 → 2 transition wave. The unit cells are
labeled with the phases. (b)–(d) Spatiotemporal plots of displacement obtained from experiments for 1 → 2, 2 → 3, and 1 → 3 transition
waves, respectively. Insets show the displacement time series of different moving masses. (e) Experimental validation of the scaling law
in Eq. (14).

investigate this unique transition wave by varying the onsite
potential and excitation amplitude. First, we keep d1 and d2

constant while varying d3 to control the energy of Phase 3
relative to Phases 1 and 2, while maintaining nearly constant
energy barriers, as shown in Fig. 4(a). As d3 increases, the
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FIG. 4. (a) On-site potential for varying values of d3 keeping
d1 = 18 mm and d2 = 15.3 mm, fixed. (b) Number of particles un-
dergoing the 1 → 3 transition in a chain of length 100 vs d3. The
1 → 3 transition is dependent on the initial amplitude A. For all
initial amplitudes less than Acrit (= 32 mm), we do not observe the
1 → 3 transition wave.

third well becomes shallower, reducing the asymmetry and
lowering the energy differences �E13 and �E23. Next, we
conduct numerical simulations on a system of 100 unit cells
with varying d3 to examine the propagation length of the tran-
sition wave. When the initial amplitude exceeds the critical
threshold to cross the energy barrier between Phase 2 and
Phase 3 (Acrit = 32 mm), we observe the 1 → 3 transition
wave propagating through the system as shown in Fig. 4(b).
However, for larger values of d3, fewer particles participate in
the wave propagation, suggesting that reduced asymmetry of
Phase 3 with Phases 1 and 2 results in lower energy gain with
each snap, thereby shortening the propagation distance.

B. Effect of boundary conditions

In this section, we evaluate the role of boundary conditions
on the behavior of transition waves. All of our previous studies
have been conducted on chains with fixed-fixed boundary con-
ditions, where we observed no reflection of transition waves
upon reaching the opposite end of the chain. To assess whether
this observed behavior persists under varying boundary con-
ditions, we analyze a chain of 100 unit cells with a distinct
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stiffness, kb, applied only to the final spring in the chain, as
depicted in Fig. 5(a). The interparticle stiffness for all other
springs remains k. We conduct a numerical study on the reflec-
tion of transition waves as a function of kb. For instance, kb =
0 corresponds to a free boundary condition. The spatiotem-
poral plot of displacement for this case is shown in Fig. 5(b).
We observe a 1 → 2 transition wave propagating from left to
right, converting the entire chain into Phase 2. Upon reaching
the free boundary at the right end, a reflected 2 → 3 transition
wave initiates, converting the chain from Phase 2 to Phase 3,
the lowest energy state. Notably, no reflection occurs when
2 → 3 or 1 → 3 transition waves approach the free boundary,
as the chain has already reached its most stable state (Phase 3)
by this point, with no lower energy states available.

Next, we investigate wave reflection in chains with varying
values of kb. Our results show that the 1 → 2 transition wave
reflects as a 2 → 3 wave when kb/k < 0.0096. This threshold
is explained by tracking the peak kinetic energy of the last par-
ticle, comparing it to the effective energy barrier necessary to
transition to the lower energy state, Phase 3. Figure 5(c) illus-
trates the peak kinetic energy as a function of the normalized
stiffness kb/k alongside the critical kinetic energy required
for the 2 → 3 transition. This critical kinetic energy, derived
from simulations of the 2 → 3 wave in the chain’s bulk un-
der identical parameters, is given as KE

crit

2→3 = 3.18 × �b23,
where �b23 represents the energy barrier between Phase 2 and
Phase 3, with the factor of 3.18 capturing interparticle stiff-
ness and on-site potential asymmetry effects. Our findings
indicate that reflection occurs when the peak kinetic energy
of the last particle surpasses this critical threshold. These
insights open avenues for manipulating the final state of a
multistable lattice through boundary condition adjustments.

C. Nucleation

In this section, we study the collision of two transition
waves. We consider a chain with an asymmetric tristable
on-site potential shown in Fig. 2(b) and excite the chain from

both ends. Initially, the entire chain is in Phase 1. We then
trigger 1 → 2 transition waves from both ends. We observe
transition waves propagating towards each other from the
extreme ends and colliding at the middle of the chain at about
t = 0.254 s, as shown in Fig. 6(a). The collision induces
larger displacements and thereby nucleates a new phase, i.e.,
Phase 3, in the fifth and sixth unit cells. Consequently, this
nucleus triggers 2 → 3 transition waves from the middle of
the chain that propagate back to the boundaries.

In Fig. 6(b), we show an experimentally measured spa-
tiotemporal map of displacement. The formation of a remote
nucleus and the lattice transforming to Phase 3 is evident.
We further show the temporal dynamics of the fourth and
sixth unit cells in Fig. 6(c). We observe that the fourth unit
cell transitions to Phase 2 (u ≈ 0) before the sixth unit cell.
However, the latter transitions to Phase 3 earlier than the
fourth unit cell. This is consistent with the earlier observation
that nucleation occurs at the fifth and sixth unit cells.

Nucleation can be interpreted as the collision of a kink and
an antikink traveling in opposite directions [37]. In our study,
the asymmetric tristable potential ensures that the propagation
of these kinks and anti-kinks remains sustainable, even in
longer chains and under damping [see Supplemental Mate-
rial [34] (Sec. III)]. The experimental demonstration of this
nucleation mechanism is another aspect of our work. Previous
studies explored nucleation via collisions of vector solitons or
breathers [29,38,39], which relied on only two stable states. In
contrast, our mechanism leverages the design of all three sta-
ble states. Furthermore, the sustainability of transition waves
in larger systems under damping highlights the robustness of
this approach for achieving nucleation in extensive systems.

Next, we delve deeper into the nucleation mechanism to as-
sess its resilience under the varying asymmetry of the tristable
on-site potential. By keeping d1 and d2 constant and varying
d3, as shown in Fig. 4(a), we simulate the collision of 1 → 2
transition waves in a ten-particle chain. The focus is on the
central particles (fifth and sixth), which must acquire suffi-
cient kinetic energy to overcome the effective energy barrier
between Phase 2 and Phase 3. During the collision, the spring
connecting the fifth and sixth particles remains unstretched,
allowing the effective energy barrier to be approximated using
the effective potential. This potential combines the on-site
energy [E (u)] of the fifth (or sixth) particle with the intersite
energy ( 1

2 ku2) of the spring connecting it to the fourth (or
seventh) particle, as shown in Fig. 7(a) and given as

Energy2→3
effective = E (u) + 1

2 ku2. (15)

The effective energy barrier is determined by calculating the
local maximum of the effective potential. This maximum
occurs at u2→3

min ≈ 10.712 mm, a point between Phase 2 and
Phase 3. The barrier is then given as

Barrier2→3
effective = ∣∣E(

u2→3
min

) − E (Phase 2)
∣∣ + 1

2 k
(
u2→3

min

)2
.

(16)

Figure 7(b) shows the variation of the effective energy barrier
with d3. Additionally, the kinetic energy of the fifth and sixth
particles is plotted at the moment they reach Phase 2. Re-
markably, the kinetic energy consistently exceeds the effective
energy barrier, confirming that the fifth and sixth particles
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successfully reach Phase 3, thereby initiating nucleation for
all tested values of d3.

We also track the kinetic energy of the fifth or sixth
particles immediately after nucleation, i.e., when they reach
Phase 3, as shown in Fig. 7(b) as a function of d3. For lower
values of d3 (corresponding to a deeper third well), this post-
nucleation kinetic energy is significantly high, enabling the
nucleation to propagate as a 2 → 3 transition wave toward the
boundaries. However, for higher values of d3, where Phase 2
and Phase 3 approach similar energy levels, nucleation occurs
but fails to propagate toward the boundaries of the chain. This
failure arises from the reduced kinetic energy of the nucleating
particles post nucleation for large d3.

To illustrate the effect of d3 on the occurrence and propa-
gation of nucleation, we present spatiotemporal displacement
maps for two cases: d3 = 12.4 mm and d3 = 14.4 mm, in
Figs. 7(c) and 7(d), respectively. The former demonstrates
both nucleation and propagation, while the latter (with
larger d3) shows nucleation but no subsequent propagation.
Nonetheless, nucleation and propagation are observed over
a wide range of asymmetries between the stable states, as
dictated by d3.

Interestingly, the size of the nucleus depends on the number
of particles in the chain. For example, two particles (the fifth
and sixth) create the nucleus in the case above. Moreover, for

an odd number of particles in the chain, it is possible to have a
nucleus of only one particle [see Supplemental Material [34]
(Sec. III)]. This implies that even if only a single particle is
nucleated due to the collision of a kink and an antikink, it can
effectively induce the propagation of the new phase in both
directions. Moreover, it is also possible to remotely nucleate a
new phase at an arbitrary location (and not only at the center)
in the chain using a time delay of actuation from either end
[38]. Refer to Supplemental Material [34] (Sec. III) for details.

D. Stationary domain wall

In this section, we investigate the collision of two transition
waves but with different on-site potentials. The tunability of
our magnetoelastic lattice allows us to obtain a symmetric on-
site potential well, as shown in Fig. 2(c). The difference in the
energy levels of Phase 2 with Phase 1 and Phase 3 enables
two different types of transition waves in the system. Initially,
the whole lattice is kept in Phase 2. We trigger 2 → 1 and
2 → 3 transition waves from opposite ends and observe their
collision. This scenario can also be understood as a collision
of two kinks [37].

In Fig. 8(a), we observe two distinct propagating transition
waves (moving domain walls) that collide at the center of the
chain. However, the fifth and the sixth particles in the chain
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continue to remain nearly in Phase 2, forming a stationary do-
main wall between Phase 1 and Phase 3. In Fig. 8(b), we show
experimentally measured spatiotemporal maps of displace-
ment confirming the formation of a stationary domain wall.

In Fig. 8(c), we plot the transient response of several parti-
cles in the chain. We observe that the fifth and the sixth parti-
cles remain stationary in that they do not snap to neighboring
stable wells, forming a stationary domain wall; however, their
equilibrium state is slightly perturbed from Phase 2 due to the
coexistence of other states next to them. We also verify that
stationary domain walls can form in longer chains. Moreover,
the domain wall could be made of only one particle (with
u ≈ 0) if the chain consists of an odd number of particles.
Refer to Supplemental Material [34] (Sec. IV) for details.

To further explore the tunability of on-site potential, we
vary the system parameters d1 and d3, ensuring d1 = d3, while
keeping d2 = 17 mm fixed, as shown in Fig. 9(a). First, due to
the symmetry of the on-site potential, we can analytically cal-
culate the width of these transition waves using the φ6 model
(see Supplemental Material [34], Sec. V, and Ref. [40] therein
for details) and plot the results in Fig. 9(b). The analysis
reveals that the spatial width of the colliding waves increases
with increasing d3, indicating that wave width decreases as
the asymmetry of the energy wells becomes larger. We then
simulate the collision of 2 → 1 and 2 → 3 transition waves.

Upon collision, we plot the steady-state displacements of
the middle particles (fourth, fifth, sixth, and seventh) in a
ten-particle chain, as shown in Fig. 9(c). Similarly, Fig. 9(d)
illustrates the steady-state displacements of the middle
particles (fourth, fifth, and sixth) in a nine-particle chain. We
observe that, in general, more middle particles shift toward
Phase 2 as d3 increases. However, in odd-particle chains, the
middle particle always stabilizes at Phase 2. Overall, the zone
of influence, which defines the stationary domain wall formed
after the collision of two transition waves, increases with
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d3. This observation aligns with the increasing wave width
as d3 grows.

To quantify the width of the stationary domain wall, we
define the zone of influence as the number of unit cells in
their steady state within a tolerance range of ±12 mm around
Phase 2. Figures 9(e) and 9(f) show the size of the stationary
domain wall. For even-particle chains, the size increases from
zero to two particles as d3 increases, while for odd-particle
chains, the size grows from one to three particles. This again
highlights the correlation between the colliding wave width
and the stationary domain wall width, both of which increase
as d3 increases.

Finally, similar to the ability to control the spatial location
of nucleation, the location of the domain wall can be tuned
by introducing a time delay in triggering the transition waves
from either end [refer to Supplemental Material [34] (Sec. IV)
for details].

V. CONCLUSION

In summary, we investigate a one-dimensional chain with
localized external magnetic fields, formed by an assembly of
permanent magnets. Specifically, our focus is on a tristable lat-
tice, where we experimentally verify the existence of different
types of transition waves. These waves sustainably propagate
in the lattice due to the designed asymmetry in the potential
well. We also verify experimentally a scaling law that relates
the averaged power dissipated to the asymmetry in the poten-
tial well and wave velocity for all types of transition waves.
We also report the reflection of transition waves from finite
boundaries.

Additionally, we explore the collision of transition waves.
In the case of an asymmetric potential well, when two tran-
sition waves collide as a kink and antikink, we observe
experimentally the remote nucleation of a new phase. We
report the occurrence of nucleation for a range of asymme-
try in tristable potential. For larger asymmetry, nucleation is
accompanied by propagation due to the large kinetic energy
of nucleating particles. However, in the case of a symmetric
potential well, two transition waves collide as kinks, result-
ing in the formation of a stationary domain wall between
two different phases. We show the width of the station-
ary domain wall can be tuned by the shape of the tristable
potential, which also dictates the width of the colliding
transition waves.

These findings underscore the richness of dynamical phe-
nomena in multistable lattices. The design holds promise for
the development of reconfigurable materials under external
fields, where remote actuation through transition waves can
be utilized to tune the final state of the material.

Future work will focus on extending these findings to
higher-dimensional systems. Additionally, it would be intrigu-
ing to explore whether similar tunability can be achieved
by modifying intersite potentials instead of on-site poten-
tials, as investigated in this study. Preliminary analysis (see
Supplemental Material [34], Sec. VI) indicates that intersite
multistability leads to transitions occurring in the strains of
the connecting springs rather than their displacements.
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