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Abstract

Nonlinearity provides a powerful mechanism for controlling energy localization in structured
dynamical systems. In this study, we investigate the emergence of nonlinearity-induced energy
localization at the corners of a kagome lattice featuring onsite cubic nonlinearity. Employing
quench dynamics simulations and nonlinear continuation methods, we analyze the temporal and
spectral characteristics of localized states under strong nonlinearity. Our results demonstrate the
formation of stable, localized corner states, strikingly, even within the parameter regime
corresponding to the topologically trivial phase of the underlying linear system, which normally
lacks such boundary modes. Furthermore, we identify distinct families of nonlinearity-induced
corner states residing within the semi-infinite spectral gap above the bulk bands in both the trivial
and nontrivial phases. Stability analysis and nonlinear continuation reveal they are intrinsic
nonlinear solutions, fundamentally distinct from perturbations of linear topological or bulk states.
These findings elucidate a robust mechanism for generating localized states via nonlinearity,
independent of linear topological protection, and advance our understanding of how nonlinearity
can give rise to novel boundary phenomena in structured media. The ability to create tunable,
localized states in various spectral regions offers potential applications in energy harvesting, wave
manipulation, and advanced signal processing.

1. Introduction

Higher-order topological insulators (HOTIs) have emerged as a significant extension of topological phases of
matter over the past few years [1]. This field has garnered substantial attention by revealing topologically
protected states, such as corner and hinge modes, localized at the boundaries of appropriately dimensioned
lattices. Initially, the existence of these states was primarily linked to quantized bulk multipole moments,
offering a novel perspective on bulk charge distribution and its boundary consequences [2—10]. However,
subsequent work demonstrated that such boundary states can also arise in systems with vanishing
quadrupole moments, attributing their origin instead to mechanisms like filling anomalies intertwined with
crystalline symmetries [11]. This understanding clarified that topological transitions between trivial and
nontrivial phases, characterized by the presence or absence of protected boundary states, can be driven by
changes in bulk polarization (e.g. via alternating hopping strengths) without necessarily involving quantized
higher-order multipole moments. The fundamental concepts of HOTIs have proven broadly applicable,
inspiring research across diverse physical platforms including photonics [12-14], acoustics [15-20],
mechanics [21-27], electrical circuits [28-30], and magnetic systems [31-33].

A defining characteristic of HOTIs is the contrast between their topological phases. In the trivial phase,
systems typically behave as conventional insulators, lacking localized states at edges or corners [14].
Conversely, the nontrivial phase hosts these localized boundary states, whose existence is intrinsically linked
to the system’s bulk topology-often diagnosed by a topological invariant like the bulk polarization
[12—14]-and protected by underlying lattice symmetries. This inherent robustness against perturbations
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highlights the potential of HOTISs for applications such as robust waveguiding, signal processing, vibration
isolation, and energy harvesting.

While the understanding of HOTTIs has advanced significantly, research has predominantly focused on
the linear regime, exploring aspects like band topology, symmetry protection, and experimental realizations
under weak excitation [34—52]. However, inspired by the rich and often counter-intuitive phenomena
observed in nonlinear conventional (first-order) topological systems [53], exploring the interplay of
higher-order topology and nonlinearity is crucial. Initial investigations into this interplay have already
revealed intriguing effects, including the formation of self-induced corner states in 2D lattices [54], robust
hinge solitons in 3D systems [55], and their experimental validation in photonic kagome lattices where Kerr
nonlinearity enabled dynamic tuning of corner state frequency and stability [56]. Related nonlinear
phenomena have also been explored considering different lattice configurations [57], various types of
nonlinearities [58], and within open, driven systems [59].

Interestingly, nonlinearity was also shown to induce localized states within the bulk [60] as well as at the
corners [56] of the lattice, even within topologically trivial phases-systems devoid of such states linearly-a
phenomenon further explored through quench dynamics [61] and nonlinearity management [62]. While
providing crucial insights, these observations fundamentally challenge our understanding of localization
phenomena in the nonlinear regime and raise pivotal questions: Are these nonlinearity-induced states merely
modifications of underlying linear modes, or do they represent entirely new classes of states born from the
nonlinearity itself? Can nonlinearity similarly populate spectral gaps (such as the semi-infinite gap) in
nontrivial lattices with localized states that lack linear analogues? Furthermore, what determines the spectral
signatures and stability properties of these emergent localized states?

To address these fundamental questions, we investigate the dynamics of a nonlinear HOTI based on a
kagome lattice, systematically exploring how nonlinearity-induced corner states emerge and behave under
strong nonlinearity in both topologically trivial and nontrivial regimes. Our model incorporates onsite cubic
nonlinearity, a form common in diverse physical platforms such as mechanical systems (through geometric
nonlinearities) [63], optics (via the Kerr effect) [64], and magnetism (through flux interactions) [63]. Its use
allows us to systematically investigate the fundamental impact of nonlinearity on the boundary modes
without introducing unnecessary model complexity. We employ quench dynamics, exciting the lattice corner
and analyzing the transient response via fast Fourier transform (FFT) to identify the temporal and spectral
features of any emergent localized states. Subsequently, nonlinear continuation techniques are used to
rigorously investigate the origin, bifurcation, and stability of these states. Given the fundamental nature of
the questions, and the generality of our model and approach, this work aims to provide broad insights into
identifying and characterizing nonlinearity-induced corner states-potentially paving the way for novel
applications reliant on reconfigurable boundary modes in photonics, phononics, acoustics, and
beyond-impacting areas like wave manipulation, energy concentration, and information storage.

2. System and its linear spectrum

Our system consists of a finite kagome lattice comprising N unit cells arranged in a triangular geometry, as
shown in figure 1(a). Each unit cell, depicted in the inset, contains three masses interconnected by springs
with stiffness values k; (colored red) and k;, (colored blue), representing the intracell and intercell stiffnesses,
respectively. These stiffnesses are modulated by a scalar parameter , referred to as the stiffness differential,
and are expressed as k; = k(1+y) and k, = k(1 — ), where v € (—1,1). This alternating pattern of strong
and weak stiffnesses imparts the characteristics of a HOTI to the lattice. Furthermore, each mass is grounded
via additional springs (colored green) that incorporate a linear stiffness ko and a nonlinear coefficient ki,
with the latter introducing cubic nonlinearity into the system dynamics. We assume a single degree of
freedom for each mass, representing its out-of-plane displacement. For convenience, the equations of motion
for the masses within the unit cell are expressed in nondimensionalized form by introducing two parameters:
70 = ko/k and @ = a*ky /k. The resulting equations of motion are as follows [58]:

in,, +(14+7) 2w, —w,, —us,,)
+(1=7) (2w, =2, — U3, ) +0u1,, +ou; =0

ii,,, + (147) (2uy,, — 3, —u1,,,)

+(1=7) (2up,, —us,_,, —th,_, ) + Y0l +au, =0
its,,, + (1+7) (2us,,, —w,,, —ta,,)
+(1=7) (2us,,, — w1, —U,,,,) + 70U, , +auj, =0 (1)
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Figure 1. A kagome lattice and its linear spectrum: (a) schematic representation of a kagome lattice comprising point masses
interconnected by linear springs (colored red and blue) and attached to the ground through nonlinear springs (colored green).
The inset depicts the unit cell in three dimensions. (b) Linear eigenspectrum under fixed boundary conditions, showing the bulk
bands-acoustic and optical. The spectrum features a trivial band gap (I) for 7y > 0, a nontrivial topological band gap (II) for

7 < 0, and semi-infinite gaps above the optical band, denoted as III for -y > 0 and IV for v < 0. The topological band gap hosts
boundary states, including corner and edge states, as indicated in the spectrum.

where the variables u;,, ,, us,, ,, and us,, , denote the nondimensionalized out-of-plane displacements of the
three masses, scaled by a reference length a, with m and n specifying the position of the unit cell within the
lattice. The overdots indicate derivatives with respect to nondimensionalized time.

In the linear regime (o — 0), the eigenspectrum of the lattice as a function of y is computed under fixed
boundary conditions and presented in figure 1(b) for 7y = 4. The spectrum consists of two bulk bands,
referred to as the acoustic and optical bands, which are separated by a band gap for nonzero stiffness
differentials. The band gap that appears between the bulk bands for « > 0 is termed the trivial band gap,
labeled as region I (shaded light yellow) in figure 1(b). In contrast, the gap for v < 0 is classified as nontrivial,
as it supports topological states, and is marked as region II (shaded light pink). Specifically, the nontrivial
gap hosts edge states for v < 0 and corner states for v < —3 [35, 58]. Additionally, a semi-infinite gap exists
above the optical band for all values of the stiffness differential, designated as III (shaded light grey) for v >0
and IV (shaded light green) for v < 0. Besides these, a lower band gap appears below the acoustic band;
however, it is not highlighted in figure 1(b), as this study focuses on hardening nonlinearity, which is not
expected to support corner states in the lower band gap. Nevertheless, for softening nonlinearity, this band
gap may become relevant and should be taken into account. Notably, in the linear regime, no localized states
are observed in any of the band gaps except in the nontrivial gap (II), where edge and corner states emerge
due to the topological nature of the lattice.

In the following sections, we extend our analysis to examine the effects of strong hardening nonlinearity
(a=0.8) on the eigenspectrum of the finite kagome lattice and to investigate the dynamic characteristics of
nonlinearity-induced corner states within the trivial band gap (I) and the semi-infinite gaps (III and IV).
The characteristics of nonlinear corner states within the nontrivial band gap (II) have been thoroughly
investigated in our previous work [58] and are therefore excluded from the present study. Building on the
observation of nonlinearity-induced corner states in the HOTI [56, 61], we conduct a comprehensive
numerical investigation to gain deeper insights into their behavior.

3. Lattice withy >0

We begin our analysis with a lattice characterized by a positive stiffness differential (y = 0.6), which exhibits a
trivial band gap (I) and a semi-infinite gap (III) in the linear limit. To explore signatures of corner
localization, we perform quench dynamics by imparting an initial velocity to the corner masses. Upon
detecting a localized corner state, we apply numerical continuation to trace the entire solution family and
examine its stability characteristics.

3.1. Quench dynamics
We apply an impulse to the masses at the top corner of the lattice through an initial velocity condition,
defined as follows:
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Figure 2. Impulse excitation in a lattice with > 0. (a) Schematic representation of the lattice, showing an initial impulse applied
to the top mass (i = 3). Fraction of energy localized in the top unit cell (Ejoc/Ein) and the corresponding FFT spectrum for (b) low
input energy (Ei, = 5) and (c) high input energy (Ei, = 25). At low input energy, most of the energy leaks into the bulk, and no
frequency components appear in the band gap, indicating linear behavior. However, at high input energy, vibrations become
confined to the top unit cell, and two dominant frequency components emerge: one in the trivial band gap (I) and the other in
the semi-infinite gap (III). Additionally, two smaller peaks appear in the lower band gap and semi-infinite gap at frequencies
corresponding to linear combinations of the dominant frequencies.
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u; (1) = v at t=0 (2)

where v represents the initial velocity imparted to the ith mass. All other masses are initialized with zero
displacement and velocity. This setup corresponds to a localized impulsive excitation at ¢ = 0, introducing a
total input energy of B, = > %1'4,-(0)2 into the lattice. The nonlinear equations of motion are integrated
using a high-precision explicit time integration scheme with a sufficiently small-time step to ensure
numerical stability and energy conservation. The transient responses of all masses are tracked over an
extended simulation window (¢ =0 to t = 0.6 x 10*), and localization is quantified by computing the
fraction of energy localized in the top unit cell relative to the input energy, i.e. Ejoc/Ein. A value of

Ejoc/Ein = 1 indicates that all the energy remains confined to the corner unit cell, signifying a perfectly
localized corner mode. Additionally, the frequency content of the excited state is obtained by performing a
Fourier transform of the displacement signal of the excited mass.

Figure 2(a) shows a single-mass excitation, where the mass located at the top corner of the lattice (i=3)
is subjected to an impulsive input. Figures 2(b) and (c) display the evolution of Ej,/E;, and the frequency
content of the excited mass for low and high input energy, respectively. At low input energy (Ei, = 5), the
impulse applied to the top mass (i = 3) leaks entirely into the bulk over time, resulting in negligible Ejoc/Ein-
The corresponding FFT spectrum confirms that only bulk states are excited, indicating the absence of corner
states, consistent with the linear lattice spectrum in figure 1(b). However, as the amplitude of the initial
velocity increases (Ei, = 25), nonlinear effects become significant, leading to energy confinement at the top
corner of the triangular lattice. This behavior is in agreement with experimental observations reported in
[56], where nonlinearity-induced corner states were detected in the trivial phase of a photonic kagome lattice
excited by a light pulse at the top corner mass. While [56] establishes the existence of such nonlinear corner
states, it does not provide insights into their origin, spectral signatures, or stability characteristics.
Interestingly, figure 2(c) reveals the coexistence of two dominant frequency components-one within the
trivial band gap (I) and another within the semi-infinite gap (III)-suggesting the presence of distinct types of
corner states.

To further explore this phenomenon, we compute the short-time Fourier transform (STFT) of the
transient response at the top mass (i = 3), as depicted in figure 3(a). The results indicate that the excited
frequencies remain constant over an extended period, suggesting their stable nature. Extracting the
component signals corresponding to the dominant frequencies (w; = 2.52 and w, = 3.37) and plotting their
spatial profiles in figure 3(b) reveals distinct corner states: one within the trivial band gap (I), where the three
masses in the top unit cell vibrate in phase, and another within the semi-infinite gap (III), where only two
masses (=1 and i=2) in the top unit cell vibrate in phase. This identification of two types of corner states
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Figure 3. Transient dynamics of the excited corner states during single-mass excitation: (a) STFT of the transient response
measured at the top mass (i = 3), illustrating that the frequencies of the excited states remain constant over time, indicating their
stability. (b) Component signals corresponding to the dominant frequencies (w; = 2.52 and w; = 3.37) and their spatial profiles,
extracted from the transient response.

during impulse excitation is significant, as it demonstrates the existence of multiple localized modes in
different spectral regions (I and III). Furthermore, the persistence of these states over time suggests that they
are stable nonlinear states.
We also consider other feasible initial conditions, for example, two-mass and three-mass excitations to
investigate additional corner states in the nonlinear lattice, and we report only the cases in which new
nonlinearity-induced corner states appear. For two-mass excitation, the masses at i =1 and i = 2 are excited
simultaneously with E;, = 25, in both in-phase and out-of-phase configurations, as shown in figures 4(a) and
(b), respectively. In both configurations, energy remains localized at the top unit cell, confirming the
presence of corner states. During in-phase excitation, the corner states identified from single-mass excitation
reappear, as evidenced by the STFT and the corresponding spatial profiles shown in figure 4(c). Interestingly,
during out-of-phase excitation, a new type of corner state emerges within the semi-infinite gap (III), as
depicted in figure 4(d). This state exhibits a configuration where the two masses (i =2 and i = 3) in the top
unit cell vibrate in-phase, but its orientation differs from that of the state shown in figure 4(c). A mirror
image of this state, with masses (i = 1 and i = 3) vibrating in phase, can also be obtained by reversing the sign
of the excitation.
In the three-mass excitation scenario, we simultaneously excite the masses at sitesi=1,i=2,and i=3
with an impulse corresponding to Ej, = 200, as illustrated in figure 5(a). This high-energy excitation is
introduced to investigate whether a corner state exists in the semi-infinite gap (III), where the three masses
within the top unit cell vibrate in phase. Interestingly, as a consequence of the three-mass excitation, the
energy localizes within the top unit cell, and the STFT plot in figure 5(b) indicates the emergence of a new
corner state within the semi-infinite gap (III). The spatial profile shows a configuration in which the three
masses of the top unit cell vibrate in phase. It is important to note that this corner state, residing in the
semi-infinite gap (III), is distinct from the one found within the trivial band gap (I) in figure 4(c). It
oscillates with a large amplitude, and the surrounding masses exhibit a different vibrational response
compared to the state in the trivial band gap (I).
Thus far, our quench dynamics analysis of the lattice with v > 0 has revealed five distinct corner states:
two states, characterized by three masses in the top unit cell vibrating in-phase, residing within both the
trivial and semi-infinite band gaps; and three states, involving two masses in the top unit cell vibrating
in-phase (including a mirror image), residing within the semi-infinite gap, as illustrated in figures 4 and 5.
Since these states represent inherent solutions to the nonlinear system, it is necessary to identify their origin.
[62] reported that, in the trivial phase, corner states emerge from the evolution of bulk states through
appropriate nonlinearity management, involving a combination of hardening and softening nonlinearities.
Although our system employs a simple cubic hardening nonlinearity, it remains necessary to verify whether
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Figure 4. Two-mass excitation in a lattice with v > 0: (a) in-phase excitation of masses at i =1 and i = 2. (b) Out-of-phase
excitation of the same masses, showing energy localization at the top unit cell. (c) STFT and spatial profiles corresponding to
in-phase excitation, illustrating the previously observed corner states. (d) STFT and spatial profiles for out-of-phase excitation,
revealing a new stable corner state within the semi-infinite gap (III).

these nonlinear corner states originate from bulk states or represent isolated solutions. To address this, we
systematically trace their solution families through a nonlinear continuation process, using these excited
states as initial guesses. The details of this continuation procedure are provided in the following sub-section.

3.2. Nonlinear continuation

We employ a Newton solver to trace the family of solutions of the excited corner states by performing a
continuation process across various frequencies. This analysis elucidates the origin of nonlinearity-induced
corner states by presenting the frequency-lattice energy relationships of the family of excited corner states.
The lattice energy of a state is calculated as the sum of the kinetic energy of all masses and the strain energy
stored in the intercell, intracell, and grounded springs. Additionally, we assess the linear stability of these
states using Floquet theory, with stability determined through the computation of Floquet multipliers.
Details of the numerical methods used to compute these states and evaluate their stability are provided in our
previous work [58].

Figure 6(a) displays a frequency-lattice energy plot illustrating the evolution of five different types of
corner states, obtained through the continuation procedure. These curves are denoted by different colors and
do not originate from any bulk states. Interestingly, they represent isolated solutions and constitute a novel
observation in the analysis of a nonlinear HOTI. Each curve has two branches: one stable and the other
unstable, represented by solid and dashed lines, respectively. The stability of each branch is determined by
examining the maximum amplitude of the Floquet multipliers (|A|), as shown in figure 6(b). The solutions
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Figure 5. Three-mass excitation in a lattice with v > 0: (a) in-phase excitation of the masses at i=1,i=2, and i = 3. (b) The
STFT, Eioc/Ein, and corresponding spatial profiles demonstrate energy localization within the top unit cell, revealing the
emergence of a new stable corner state within the semi-infinite gap (III). This state, characterized by the in-phase oscillation of all
three masses in the top unit cell, is distinct from the corner state observed within the trivial bandgap in figure 4(c), as evidenced
by differences in the vibration patterns of other masses.
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Figure 6. Nonlinear continuation of the excited corner states for lattice with v > 0: (a) Frequency-lattice energy plot illustrating
the evolution of five distinct corner states, represented by blue, green, orange, black and pink curves. Each curve consists of stable
(solid lines) and unstable (dashed lines) branches. (b) Maximum amplitude of the Floquet multipliers (|A|) used to assess the
stability of the corner states. Stability is ensured when |A| < 1, while instability occurs when || > 1. (c)—(g) Spatial profiles of the
corner states at selected points along the continuation curves, as indicated by circular, triangular and diamond markers in panel
(a). The inset depicts the spatial profiles of the corresponding unstable states at the same frequencies.

remain linearly stable when the maximum amplitude of the Floquet multipliers is less than or equal to unity,
while instability arises when it exceeds unity. The spatial profiles of the different stable corner states,
indicated by various markers in the continuation curves, are presented in figures 6(c)—(g). These profiles
illustrate the diverse ways in which energy can be localized at the corner under identical frequencies but with
different excitation conditions. The inset depicts their unstable counterparts at the same frequencies.

In figure 6(a), the blue curve represents the family of solutions associated with the first corner state, as
indicated by the circular marker in figure 6(c), where the three masses in the top unit cell vibrate in phase.
These solutions reside within the trivial band gap (I), in agreement with prior observations from the STFT
diagrams. As previously noted, the curve exhibits two distinct branches: a stable and an unstable branch,
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with a transition occurring at w = 2.28, just above the acoustic band. Notably, the curve does not intersect
the acoustic band but instead merges with the optical band at higher energy levels (not shown here).

The pink curve in the semi-infinite gap (III) represents the family of solutions associated with the second
corner state, indicated by the triangular marker in figure 6(d). In this corner state as well, the three masses in
the top unit cell vibrate in phase but with a significantly larger amplitude. Additionally, this state is distinct
from the first corner state in terms of the vibrational characteristics of the remaining masses in the system, as
observed in both the stable and unstable states. The other three curves, depicted in green, orange, and black,
correspond to the remaining three corner states shown in figures 6(e)—(g). These states lie within the
semi-infinite gap (III) and are marked with diamond symbols. The corner states shown in figures 6(f) and
(g) are mirror-symmetric, resulting in equal energies. Consequently, they overlap in figures 6(a) and (b), as
indicated by the orange and black curves. All the corner states residing in the semi-infinite gap do not
intersect with the optical band and remain localized even at higher energy levels.

In summary, through a combination of quench dynamics and nonlinear continuation, we identify
nonlinearity-induced corner states emerging in different spectral regions of the nonlinear HOTI for > 0.
Physically, these corner-localized states can be interpreted as nonlinear discrete breathers [60] pinned at the
lattice corners due to the interplay between nonlinearity, discreteness, and boundary conditions. They
exhibit strong energy localization at the corners and persist over long timescales without radiating into the
bulk or edges. By nature, they are analogous to bulk breathers or discrete solitons [65-67], but they facilitate
energy localization specifically at the lattice corners. Our numerical analysis reveals that these
nonlinearity-induced corner states constitute isolated solutions of the nonlinear system that do not evolve
from any bulk states, representing a novel and significant finding in the study of nonlinear HOTIs.

4. Lattice with v < 0

We now analyze a lattice with a negative stiffness differential (7 = —0.6), which exhibits a nontrivial band
gap (II) and a semi-infinite gap (IV) under linear conditions. During quench dynamics, we do not consider
the low impulse single-mass excitation case, as this leads to nonlinear corner states in the nontrivial band gap
(II) that have already been discussed in our previous work [58]. Instead, we focus on the two-mass and
three-mass excitation with a large impulse, allowing us to explore the emergence of nonlinearity-induced
corner states in the semi-infinite gap (IV).

4.1. Quench dynamics

Similar to the analysis conducted for a lattice with > 0, we also perform two-mass and three-mass
excitations for the case of 7y < 0, as shown in figures 7 and 8. We report only the instances in which new
nonlinearity-induced corner states emerge.

For two-mass excitations, we apply both in-phase and out-of-phase excitations at masses i =1 and i =2
simultaneously, as shown in figures 7(a)—(c). In both cases, excitations of varying energy levels are
introduced, leading to the emergence of distinct corner states in the semi-infinite gap (IV). Figures 7(d) and
(e) present the STFT diagrams and the corresponding spatial profiles of the newly excited corner states when
in-phase excitations with energies E;, = 100 and Ej, = 200 are applied at masses i=1 and i =2
simultaneously. The first corner state, shown in figure 7(d), exhibits a configuration in which most of the
energy is localized at the top corner mass of the lattice (i = 3), whereas the second corner state in figure 7(e)
reveals a configuration where the majority of the energy is localized at masses i = 1 and i = 2 within the top
unit cell. On the other hand, for out-of-phase excitation, an impulse with energy E;, = 100 is applied
simultaneously to the masses at i = 1 and i = 2. The resulting STFT diagram and spatial profile, shown in
figure 7(f), indicate the presence of a corner state, despite its resemblance to an edge breather. Notably, the
masses at 1 =2 and i = 3 for this state also exhibit small oscillations, reinforcing its classification as a corner
state. At higher energy levels, a similar corner state persists; hence, it is not reported in figure 7. This corner
state can also be realized by applying in-phase excitation at i = 2 and i = 3 simultaneously.

Next, we perform a three-mass excitation by applying an in-phase impulse at locations i =1, i =2, and
i=3, as shown in figure 8(a). The STFT diagram and the spatial profile of the excited corner state for an input
energy of Ej, = 450 are presented in figure 8(b). Similar to the case of a lattice with v > 0, we observe a stable
corner state in the semi-infinite gap (IV), where the three masses in the top unit cell vibrate in phase with a
higher amplitude. Its shape indicates that the corner state retains its characteristic profile despite variations
in the lattice parameter ~y. By systematically varying the excitation locations within the top unit cell, we
identify a total of seven distinct corner states, all of which are employed in the continuation procedure.



K Prabith et al

10P Publishing

New J. Phys. 27 (2025) 083501

(@) Lattice withy =-0.6
Two mass excitation

Ein=100

(b)

Impulse

(c)

gap (IV).

STFT measured at i = 3

2.5

Excited corner state

0¢ =]
0%,
0,0%4 |
0% 0% w
02 2o

[
0° B

g

=

(e}

o)
o)

&)
o
00
o
OD
(s)
©o,
o
0%,
040
S0

1)
0,
o
o,
15}
0,
o
)
0
o

o
o
S
o

%o,
(o)

Og,
©

g

s

OL

o

o,
o
0
o
0
o

0,
o
0
o
0
o
0
2l
:
r
=]

(e}
S,
(e}
(e}
o
O,
(o)
Og
(o}
%0,
(o}
OG
(o}
08,
0

o
S
00
QO
(e}
O,

0@
=3
(=]

Z-dir displacement

0,
o,
O,
(o}

Co
o0
08

(s}
99,

O
UOO
0

GD
OO

2o,
OO 0,

0,,0
OO Q,

OOD

DO Q,
GOD

OOO 0
G0
OQ

o
O
0,
o
o
s}
o,
[}
0
o
o
o
o
o
[
O
o,
o
0
o
O
o
(o}

2.0
0.0

(©)

time

STFT measured at i = 1

4.0

35

2.5

e,
o
Q,
(o}
o
(=)
Z-dir displacement

2.0

()

time

STFT measured at i = 1

4.0

3:5

8 Bl e e 00 0 0 0 OC
000000000000

2.5

7%}
o

Z-dir displacement

0 0 00O 0.0

2.0

time
[T
-3 -1 3
Energy (dB)

Figure 7. Two-mass excitation for a lattice with v < 0: (a)—(c) schematic representation of two-mass excitations applied at masses
i=1 and i =2 simultaneously, considering both in-phase and out-of-phase conditions. (d)—(e) STFT diagrams and spatial profiles
of the two distinct corner states emerging from in-phase excitations with energies Ei, = 100 and Ej, = 200. The first corner state
(d) exhibits energy localization at the top corner mass (i = 3), while the second state (e) shows localization at masses i =1 and
i=2 within the top unit cell. (f) STFT diagram and spatial profile of the corner state excited by an out-of-phase impulse with
Ein = 100, revealing a new type of corner state. All these newly observed stable corner states reside within the semi-infinite

4.2. Nonlinear continuation

The continuation procedure is initiated by using the excited corner states as the initial guess for the nonlinear
solver. The results of this analysis, including the frequency-lattice energy relationships and the corresponding
stability curves, are presented in figures 9(a) and (b). The green curve represents the family of solutions
corresponding to the corner state shown in figure 9(c), characterized by energy localization at the top corner
mass (i=3). This continuation curve exhibits both stable and unstable branches, with stability switching
occurring just above the optical band. These branches extend into the semi-infinite gap as more energy is
supplied to the lattice. The orange and black curves correspond to the corner states depicted in figures 9(d)
and (e), which are mirror images of each other and, consequently, overlap in the continuation curves. All
these corner states are presented at w = 3.8, as indicated by circular markers in figures 9(a).
The blue curve represents the family of solutions for the corner state shown in figure 9(f), where

vibrations are predominantly confined to i =1 and i = 2. This curve undergoes stability switching far above
the optical band and extends into the semi-infinite gap at higher energy levels. The yellow and dark gray

9



K Prabith et al

3

0

a5 0
Z-dir displacement

3.8, as indicated by

3

STFT measured at /

Z-dir displacement

(b)

0.6

(a) Lattice with y

New J. Phys. 27 (2025) 083501

10

Z-dir displacement

3

o
yuawadedsip np-z [ORN o 0%
1 PR 508 S8 0%
o S o g2 B ogPB 3088 s
b = i 3= i 08780878678 08"5o2%
1 50 3 509040040708 ) '3 200
s 020 =1 =% & 005 308 808 9058 W & 507
597940 ST < 50%640°0,090,6°9,0% 5 °
- oC70g070 O oo M 50705090450%04,096407%00 g
2 0070040 LEe o I 08°9,07050°0,0%0,0°0,0"C =8 o
096.6%0,0%0 s iPc] 8,0°0,600,0°0,8%6,0°0,0 ST 0 508
= O, C, o) L o= 2 060000000 0,00 % (e} (o)
] ;0¥0,0%c,0%0 0 o R o C0a0°0450°040°040°040 bl b
z 00%05090,6%0,0% 3 g | 08 08°000%0,890,0%0 g
P 0%0,0%0,0°6,0°0,0 ERi= 08,0°9,3°8,8°0.8 W~ 3
—_— ¥ X 8,0-0~0~0,
e 0%0,0%,0%,6% 0% Y 0550%040°0,0°0 g %e oo
o« 69 o2 Dud 26l Co ~ &8 Q908,503 5 N 050~000
E T ,e08iRe8i808 008 20 006 £22 % e
= . 0,
s || ®85099,0%0,0°0,090,0%0,0 L% m ) %08 803 o)
_.M a 000°05,090,090,6%0,0°0 £ 0 g = %eg
0/0¥ 04004000040 3
T 62 a2 9007000 On = 2
2 056°%0,0°9,6%0,0% H = ]
= 0646°0,0%6,0°0,0 0@ o i 5]
= 0550, fo Y ! =< 10380 0%0,0
< 050"04C~ 04070 o 3308, 08 80!
» 20,0%6,0%0,0 3 25 o8 ot S 105°8:8%8
= 05.6%,0°%0 » O 508 ,20¢ 096,096,066 £
©640°9,0 2= R=] %] _06°8057808%808 “ 2 =
5,0°0 08308 50330 « §
0, - 00000 0a0"0n0 2
959 =i =] = 5000,690,0°6,0°6,6% ]
© ] 1 69°050%050%048°040"060 =3
[P RV I 58°0,070,0"0,07CH0"0q0 0 =32 0%
o % O H > 5 965090,096,0%0,690,59,0 = 5 02990
2 Vel = — '050%0,070,0%0,0"0,0% ) 070,570
i | <o = = Y o o 0:0°06070,890,8°0,0 5 685087008
L . = = < 003 908 203 98 9 ] 908,303
— 8 0500657040040 -3 08 208
[ 1 [5) — '0o0%Co0~050 0 o N 6,0
4 ' =9 o 05890509050 o8
o : =50 £05,0%5,0 0803 308 o
. ! tm SIR) = ooomom e oow 0508507050700
o ' ) o e
o ' =1 m S o I 92°055°0,
. 1 @ S>3 6,898,
" ' E=t " 08 2o
R R L # 5
o ' b
1 ' 5 g T o g, ]
i Vg e & $EGYE 3
=1 ‘ as] PE 23
15 ' = a8 g o o =
2y ' © i o 59 = o~
. SiEmE E B& SeEd T =
Al ST Y B fUd sfad
=1 ' =] o S
| o ' < —~ =
19, : m Eo<®
o i 0O~ o uum 5
=
- ! S EE 2%
" . = 2 5= = 03750875
Do , “ ~ g9 o %03 02"
L | i S22 5og
o ' -9 o & o
L ! S5 Ea - o
3 090,090,
L 1 V § .8 o 50%0,090,0
- ' = » I #2908 30879
S8 . ®,0°0,0
[ : =g = g *e8 208
ih Ll e 2 2 S - ¥
= R
=) wy = vy < =g
3 ] 2 d >
< e e S S gl vz
B= R m <
(U] = o
= S5o s la ~
< oS0 9 - &g
SE< s = L L 1 L -
= O a =
[=J=} Il 2 T T T T m
Q = B A
ERd g
= S g e S 0°8,6°8
05 208
5] £ 2982002
s ‘5.9 © 00g0°0,0%0
= Q .= =] *003°%
2 2= 5.5 9087508
2 S E¥y g
o < o 7
%o @ 222
[ < =
o= © g5 s
= g2 509,08
g2 = =g g B
s £ = 35 &8 2 200
B
g = EBEE 2
i = = of
o = =]
= 03 300 & PR P
= ) 03 508 0 Y O
= @ 08,0 0 8.0 *“ =
= o8 EE<= 9 <
E gag <
g AT I =]
- =.EBE =
s

10P Publishing

3,

Energy
[+
[e]
O
%
O
=]
[e]
8]
%
O
[s]

0.0
Z-dir displacement

<13

In summary, the continuation curves presented in figures 9(a) and (b) suggest that these solutions are

depicted in figures 9(c)—(i). Circular, diamond, and triangular markers indicate the specific corner states presented at w = 3.8.
isolated nonlinear states, emerging independently of any bulk modes. Moreover, a greater number of

highlighting the emergence of nonlinear corner states. (b) Stability diagram showing stable and unstable branches of the
continuation curves. The green, orange, black, blue, yellow, dark gray, and pink curves correspond to distinct corner states, as
The results confirm that these nonlinear corner states are isolated solutions, emerging independently of bulk modes.

Figure 9. Nonlinear continuation of the excited corner states for lattice with v < 0: (a) frequency versus lattice energy,

curves represent the corner states shown in figures 9(g) and (h), which are also mirror images of each other.
These corner states were obtained by altering the location of the in-phase impulse excitation within the top
unit cell compared to that in figure 9(f). All these corner states are presented at w

solutions for the corner state shown in figure 9(i), where all the masses in the top unit cell vibrate in-phase
with a higher amplitude. This state is indicated by a triangular marker in figure 9(a), and its mode shape and
amplitude distribution closely resemble those observed in the lattice with > 0 in figure 6(d).

diamond markers in figure 9(a). Finally, the pink curve in figures 9(a) and (b) represents the family of
nonlinearity-induced corner states are observed in the semi-infinite gap (IV) for the lattice with v <0
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compared to the case of v > 0, highlighting the importance of a parameter y in determining the existence
and distribution of nonlinear corner states.

5. Conclusions

In conclusion, this study presents a novel approach to energy localization in dynamical systems by
introducing nonlinearity into a HOTI based on a kagome lattice. Through quench dynamics, we uncover the
emergence of nonlinearity-induced corner states that manifest even in the trivial phase and the semi-infinite
gap of the trivial as well as nontrivial lattices-regions conventionally regarded as insulating in the linear
regime. Our results suggest that these corner states are not merely modifications of existing topological or
bulk states. Instead, they emerge as entirely new solutions intrinsic to the nonlinear system, identified
through the nonlinear continuation technique. The diversity of corner states observed across different
spectral regions provides an efficient mechanism for energy localization, which holds promising applications
in areas such as energy harvesting and wave manipulation.

The findings of this study open new avenues for exploring nonlinearity-induced phenomena in
wave-based systems, particularly in the context of energy localization at lattice boundaries. Beyond
mechanical systems, our results provide valuable insights applicable to a broader range of physical domains,
including photonics, acoustics, electrical, and magnetic systems. The existence of corner states, independent
of the system’s topological phase, highlights their transformative potential for various applications, such as
energy harvesting, optical confinement, topological lasers, acoustic waveguides, noise reduction, sound
manipulation, magnonic devices, and spintronic technologies.

Furthermore, future research could focus on the systematic investigation of nonlinear edge and corner
states in driven-dissipative topological lattices [68] or non-Hermitian lattices [69, 70], particularly in kagome
or other HOTT lattice geometries. In parallel, analyzing systems that incorporate in-plane displacements
could provide additional insights, as such models would exhibit richer dispersion characteristics with extra
branches and eigenvalues associated with the in-plane modes [23, 24, 36, 42]. These extended studies could
further deepen our understanding of nonlinear wave dynamics and expand the practical applications of
energy localization in complex systems.
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