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Symmetries – whether explicit, latent, or hidden – are fundamental to understanding topological
materials. This work introduces a prototypical spring-mass model that extends beyond established
canonical models, revealing topological edge states with distinct profiles at opposite edges. These
edge states originate from hidden symmetries that become apparent only in deformation coordinates,
as opposed to the conventional displacement coordinates used for bulk-boundary correspondence.
Ourmodel, realized through the intricate connectivity of a spinner chain, demonstrates experimentally
distinct edge states at opposite ends. By extending this framework to two dimensions, we explore the
conditions required for such edge waves and their hidden symmetry in deformation coordinates. We
also show that these edge states are robust against disorders that respect the hidden symmetry. This
research paves the way for advanced material designs with tailored boundary conditions and edge
state profiles, offering potential applications in fields such as photonics, acoustics, and mechanical
metamaterials.

Symmetry is a fundamental principle across various branches of physics,
playing a significant role in the physics of topologicalmaterials and enabling
robust, defect-immune manipulation of electrons1–3. These underlying
symmetries have not only advanced our understanding of electronic
properties but have also inspired the design of topological architectures for
bosons, leading to desirable mechanical4,5 and optical properties6–9.

Toy models in one dimension, such as bipartite tight binding and
stiffness or mass dimers, have long served as versatile platforms for
exploring topological physics grounded in such symmetries. Notable
examples include the Su-Schrieffer-Heeger (SSH) model10, Maxwell
lattices5,11, anddimer configurations in onedimension12,whichbelong to the
BDI topological class and exhibit chiral, particle-hole, and time-reversal
symmetries13,14. According to the principle of bulk-boundary correspon-
dence, edge states can appear in finite structures if the bulk is topologically
non-trivial and the boundaries preserve the underlying symmetry15,16. These
models have not only provided foundational insights but have also inspired
the creation of complex topological materials in various dimensions1–3,17–23.

Recent research has unveiled that symmetries can also manifest in
latent24,25 or hidden forms26–30. Latent symmetries act on the isospectral
reductions of the systemHamiltonian andmanifest themselves in the lower-
dimensional subsystems.Other hidden symmetries can be revealed through
appropriate coordinate transformations. For instance, in spring-mass
models—widely applicable acrossmechanical, optical, acoustic systems, and
electrical circuits—a mass dimer chain with an odd number of two altering
masses and uniform stiffness, and with free boundaries is known to support

edge states31,32. Allein et al.30 demonstrated that for the mass dimer, the
underlying chiral symmetry for topological characterization emerges in
deformation coordinates rather than the traditional displacement coordi-
nates used for spring-mass models. This insight opens new avenues for
designing architectedmaterials by considering varyingmasses, which could
support novel topological states protected by hidden chiral symmetry.

In this work, we enlarge the design space of topological lattices by
varying mass along with different types of spring connections within the
unit cell. We show that by using complex spring connections33–38, mass
dimer1Dand2D lattices could support distinct andunconventional profiles
of topologically robust edge states at opposite ends—a phenomenon not
observed in canonical two-band models30,39–42. Such profiles result from the
breakage of both chiral andmirror symmetries. However, we show that the
edge states are topological since both chiral and mirror symmetries are
revealed in deformation coordinates.

Furthermore, we propose a chain of spinners strategically inter-
connected by springs as a physical realization of this model. We experi-
mentally demonstrate different edge states at opposite ends, with their
topological nature revealed through deformation coordinate analysis. We
also extend this framework to two dimensions, highlighting the intricate
fine-tuning required to observe the hidden symmetry of propagating waves
on opposite edges of the lattice. Additionally, we performa disorder analysis
based on the underlying hidden symmetry, showing that symmetry-
protected disorder can be leveraged to develop material architectures sup-
porting robust topological edge states.
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This work enhances our understanding of hidden symmetries in
topological systems and opens new pathways for designing advanced
materials with tailored edge state profiles, potentially impacting fields such
as photonics, acoustics, and mechanical metamaterials.

Results and discussion
Existing dimer models
In Fig. 1, we illustrate known spring-mass dimer models alongside the pro-
posedmodel, which leads to various types of topological edge states. Figure 1a
depicts the canonical 1D stiffness dimer comprising uniform masses but
linked with two alternating spring constants k1 and k2. In the displacement
framework, the equations of motion for the nth unit cell are given as

m€u1;n ¼ �k1ðu1;n � u2;nÞ þ k2ðu2;n�1 � u1;nÞ
m€u2;n ¼ þk1ðu1;n � u2;nÞ � k2ðu2;n � u1;nþ1Þ;

ð1Þ

where u1,n and u2,n represent the displacements of the first and second
particle in the nth unit cell. Upon substituting plane wave solutions, we get
the non-dimensional bulk displacement dynamical matrix DuðP; qÞ that
can be represented in the Pauli basis as follows: DuðP; qÞ ¼
c0I þ c1σ1 þ c2σ2 þ c3σ3, where c0 = 1 + P, c1 ¼ �ð1þ P cos qÞ, c2 ¼
�P sin q, c3 = 0, P≔ k2/k1, and q ∈ [−π, π] is the wavenumber. DuðP; qÞ
possesses chiral symmetry, i.e., σ3D̂uðP; qÞσ3 ¼ �D̂uðP; qÞ, where D̂uðP; qÞ
is the trace-less counterpart. The dynamical matrix maps to the
Hamiltonian of the standard SSH chain with two different hopping
strengths and an onsite potential. Consequently, the spectrum is symmetric
about a finite frequency, and the eigenvectors u± of the acoustic and optical
bands formchiral pairs. The systemhas awell-defined topological invariant,
namely, a winding number. A nonzero winding for P > 1 indicates non-
trivial topology, and a corresponding finite lattice with even particles and
fixed boundaries preserves chiral symmetry and supports two robust
boundary states with symmetric and asymmetric profiles12,43. In Fig. 1a, we
show the boundary state with the symmetric profile. Since the finite lattice
preserves the mirror symmetry, both boundary states also have the same
localizationprofiles at the left and right ends. Figure 1bdepicts the canonical
1D mass dimer comprising links with uniform spring constants but
alternating masses, m1 and m2. In the displacement framework, the
equations of motion for the nth unit cell are given as

m1€u1;n ¼ �kðu1;n � u2;nÞ þ kðu2;n�1 � u1;nÞ
m2€u2;n ¼ þkðu1;n � u2;nÞ � kðu2;n � u1;nþ1Þ:

ð2Þ

Upon substituting plane wave solutions, we get the non-dimensional bulk
displacement dynamical matrix DuðP; qÞ that has the following Pauli
components: c0= 1+ 1/P, c1 ¼ �ð1þ cos qÞ= ffiffiffi

P
p

, c2 ¼ � sin q=
ffiffiffi
P

p
, and

c3= 1− 1/P, where P≔m2/m1. The bulk displacement dynamical matrix
does not exhibit chiral symmetry. Therefore, topological characterization is
ambiguous.However, a finite lattice with odd particles, free boundaries, and
lightermasses at the ends supports two boundary stateswith symmetric and
asymmetric profiles31. In Fig. 1b, we show the boundary state with the
symmetric profile. Interestingly, the systemhas topological features that are
revealed by considering spring deformations as degrees of freedom. These
were referred to as “strain” coordinates in ref. 30. In the deformation
framework, the equations of motion for the nth unit cell are given as

1
k
€e1;n ¼ � 1

m2
ðe1;n � e2;nÞ þ

1
m1

ðe2;n�1 � e1;nÞ
1
k
€e2;n ¼ þ 1

m2
ðe1;n � e2;nÞ �

1
m1

ðe2;n � e1;nþ1Þ;
ð3Þ

where e1,n ≔ u1,n − u2,n and e2,n ≔ u2,n − u1,n+1 represent the spring
deformations of two consecutive springs. It can be clearly seen that the
equations of motion in Eq. (3) resemble the displacement equations of
motion of the stiffness dimer in Eq. (1), and thus again map to the SSH
modelwith onsite potential.Upon substituting planewave solutions,wewill

get the deformation dynamical matrix that exhibits chiral symmetry, thus
removing the ambiguity of defining the topological phase. Furthermore, for
a finite chain, the deformation framework requires an even number of
springs and fixed boundaries for chiral symmetry30. This translates to a
lattice with an odd number of particles with free boundaries in the dis-
placement coordinates. Since the finite lattice preserves the mirror sym-
metry, the boundary states have the same localization profiles on both ends
as in the case of the stiffness dimer.

Proposed dimer model
We have seen that the two canonical models discussed so far use spring
connections that store a potential energy of 1

2 kðu1 � u2Þ2 for any two
degrees of freedom, u1 and u2. To generalize such models further with
different forms of potential energy and explore hidden symmetries within
the deformation framework, we consider a general quadratic potential:

U ¼ 1
2
k u21 þ χu22 þ 2ψu1u2
� �

;

where k is the spring constant, and χ andψ are non-dimensional coefficients
that depend on the type of coupling. To represent a dimer model in
deformation coordinates, one requires χ= ψ2, which implies the following
form of the potential: U ¼ 1

2 kðu1 þ ψu2Þ2 ¼ 1
2 ke

2, where e is the
deformation (ref. Supplementary Note 1 for the derivation). However, for
dimermodels to exhibit chiral symmetry in thedeformation coordinates,we
also require ψ= ± 1. This yields only two possible types of spring potential,
1
2 kðu1 ± u2Þ2, that can be used to construct a dimer chain with hidden chiral
symmetry in deformation coordinates.

Based on these constraints, we propose a model inspired by the mass
dimer but featuring two distinct types of spring connections, as shown in
Fig. 1c. Although all spring constants are denoted by k, the manner in which
they store potential energy allows for classification into two types. The first
type is a conventional spring connection that stores a potential energy of
1
2 kðu1 � u2Þ2. In contrast, the second type of spring connection yields a
potential energy of 1

2 kðu1 þ u2Þ2. Due to the differing deformations in the
two types of spring connections, we term this model the “deformation mass
dimer.”The equations ofmotion for the nth unit cell can thus be expressed as

m1€u1;n ¼ �kðu1;n � u2;nÞ � kðu2;n�1 þ u1;nÞ
m2€u2;n ¼ þkðu1;n � u2;nÞ � kðu2;n þ u1;nþ1Þ:

ð4Þ

Upon substituting plane wave solutions, we get the non-dimensional bulk
displacement dynamical matrix DuðP; qÞ that has the following Pauli
components: c0 = 1 + 1/P, c1 ¼ ðcos q� 1Þ= ffiffiffi

P
p

, c2 ¼ sin q=
ffiffiffi
P

p
, and

c3 = 1 − 1/P, where P≔m2/m1.
Similar to themass dimer, the dynamicalmatrix lacks chiral symmetry

in the displacement framework. However, unlike the mass dimer, the
deformation coordinates for the nth unit cell of this model are given as

e1;n ¼ u1;n � u2;n

e2;n ¼ u2;n þ u1;nþ1

and the corresponding equations of motion are

1
k
€e1;n ¼ � 1

m2
ðe1;n � e2;nÞ �

1
m1

ðe2;n�1 þ e1;nÞ
1
k
€e2;n ¼ þ 1

m2
ðe1;n � e2;nÞ �

1
m1

ðe2;n þ e1;nþ1Þ:
ð5Þ

Now, upon substituting plane wave solutions, we get the deformation
dynamical matrix as

DeðP; qÞ ¼
1
P

1þ P �ð1� Pe�iqÞ
�ð1� PeiqÞ 1þ P

� �
;
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which exhibits chiral symmetry. Therefore, this deformation mass dimer
only reveals thehidden symmetry indeformation coordinates. Interestingly,
the eigenvalue problem can be mapped to a 1D SSH chain with an onsite
potential and alternatingpositive andnegative hopping16. Consequently, the
dispersion curve has a band gap at q= 0 instead of q= 1 as in the canonical
models, revealing non-trivial topology for P > 1.

Furthermore, we observe that a finite lattice with odd particles under
free boundary conditions exhibits boundary states on both ends forP > 1. In
contrast to previous canonical models, this finite lattice lacks mirror sym-
metry due to the presence of two different types of spring connections,
resulting in distinct localization profiles of the boundary states on different
edges shown in Fig. 1c. The hidden mirror symmetry is unveiled in the
deformation coordinates discussed here, resulting in localization profiles
that closely resemble those of the 1D SSH model with both positive and
negative hopping (see Section 1.5.2 in ref. 16).

Mixed spinner lattice
To realize the deformation mass dimer, we construct a spinner lattice as
illustrated in Fig. 2a. The lattice consists of spinners with two distinct
rotational inertias (I1 and I2), arranged alternately along the chain. The
spinners can be interconnected using various types of spring connections,
such as parallel, cross, and colinear (ref. Supplementary Note 2 for details).

However, to realize the deformation mass dimer, we utilize a mixed con-
figuration featuring alternating parallel and cross-connections. Colinear
connection, previously used to model magnetic spinners44, cannot be
employed here since its potential energy can not be represented in the
following form: 12 kðu1 ± u2Þ2 as required for the deformation formulation.
Nevertheless, they can be used to extend the 1D mixed chain into a 2D
configuration, as discussed in later sections.

Furthermore, in our mixed spinner 1D chain, the cross-connections
form a 90-degree angle with each other and with the position vector of the
connecting points. This arrangement ensures the required form of the
potential and maintains the same initial length of all springs (with a spring
constant of k/2) for experimental convenience (ref. Cross Connection in
Supplementary Note 2 for details). Therefore, the equations of motion
governing the angular rotations θ of the two spinnerswithin thenth unit cell
are expressed as

I1€θ1;n ¼ �kr2ðθ1;n � θ2;nÞ � kr2ðθ2;n�1 þ θ1;nÞ
I2€θ2;n ¼ þkr2ðθ1;n � θ2;nÞ � kr2ðθ2;n þ θ1;nþ1Þ;

ð6Þ

where r is the radial distance of the connection points, θ1,n and θ2,n represent
the angular rotation of the first and second spinners within the nth unit cell,

Fig. 1 | Deformation mass dimer. a Stiffness dimer with alternating spring con-
stants (k1 and k2) and uniform masses (m) and its tight-binding equivalent below.
The bulk spectrum has chiral symmetry. Boundary states with the same localization
profiles on both ends for topologically non-trivial finite lattices with mirror sym-
metry. bMass dimer with alternating masses (m1 and m2) but with uniform spring
constants (k) and the tight-binding equivalent that maps to the deformation coor-
dinates. The bulk spectrum exhibits chiral symmetry only in deformation coordi-
nates. Boundary states with the same localization profiles on both ends for
topologically non-trivial finite lattices withmirror symmetry. cThe proposedmodel
is a deformation mass dimer that resembles a mass dimer but with two different
spring connections. Solid spring stores the potential energy in a usual way, but the

dashed spring stores the potential energy differently due to the different nature of
deformation. The tight-binding equivalent of the deformation-based model has
positive (solid) and negative (dashed) hopping. The bulk spectrum exhibits chiral
symmetry in deformation coordinates. Furthermore, a topologically non-trivial
finite lattice without mirror symmetry supports mid-gap edge states with different
localization profiles at the left and right ends. The shaded region in the lattices
denotes the unit cell and the curled arrows around plus signs in all tight-binding
models indicate positive and uniform onsite potentials at all atomic sites. Note that
the bulk spectra are normalizedwith respect to themid-gap angular frequencywhere
its value is given as: (a)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1 þ k2Þ=m

p
for the stiffness dimer and (b, c)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kð1=m1 þ 1=m2Þ
p

for the mass and deformation mass dimers.
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respectively, and the overdot denotes the time derivative. Thus, the mixed
spinner system mimics the dynamics of the deformation mass dimer in
Eq. (4).

We seek plane wave solutions of the form [θ1,n, θ2,n] =
[θ1(q), θ2(q)]e

i(qn−Ωt), where q ∈ [−π, π] and Ω denote the non-
dimensional wavenumber and angular frequency, respectively. This
leads to the eigenvalue problem: DuðP; qÞθðqÞ ¼ ω2θðqÞ, where
θðqÞ :¼ ½θ1ðqÞ=

ffiffiffiffi
I1

p
; θ2ðqÞ=

ffiffiffiffi
I2

p �, ω :¼ Ω=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kr2=I1

p
, P ≔ I2/I1, and the

displacement dynamical matrix is given by

DuðP; qÞ :¼
2 � 1ffiffi

P
p ð1� e�iqÞ

� 1ffiffi
P

p ð1� eiqÞ 2=P

" #
:

This is the bulk matrix for the deformation mass dimer discussed in the
context of Fig. 1c. The matrix lacks chiral symmetry.

In a finite lattice with an odd number of spinners (fractional unit cells)
and free boundary conditions, localized states emerge at the mid-gap
squared frequency for P > 1, as depicted in Fig. 2b (see the 1D localization
parameter inMaterials and Methods). Here, P > 1 signifies that the system
terminates with lower-inertia spinners on both ends. In Fig. 2c, we present
the boundary state profiles forP= 1.8. Though some aspects of this scenario
resemble a known topological transition with the emergence of topological
boundary states, the necessary symmetry enabling topological character-
ization and bulk-boundary correspondence remains unclear.

To reveal the hidden topology, we consider the dynamics of our system
in deformation coordinates defined as:

e1;n ¼ θ1;n � θ2;n

e2;n ¼ θ2;n þ θ1;nþ1:

Upon rearranging Eq. (6) and seeking plane-wave solutions
[e1,n, e2,n] = [e1, e2]e

i(qn−Ωt) we obtain the eigenvalue problem:
DeðP; qÞeðqÞ ¼ ω2eðqÞ, where e(q) ≔ [e1(q), e2(q)] and the deformation
dynamical matrix is defined as

DeðP; qÞ :¼
1
P

1þ P �ð1� Pe�iqÞ
�ð1� PeiqÞ 1þ P

� �
:

When expressed in Pauli representation, DeðP; qÞ ¼ d0I þ d1σ1 þ d2σ2,
with d0 = 1 + 1/P, d1 ¼ cos q� 1=P, and d2 ¼ sin q. This implies the
presence of chiral symmetry. The winding number (νe) reveals the topo-
logical phase distinction for P < 1 (νe= 0) and P > 1 (νe= 1) denoting trivial
and non-trivial phases, respectively, as shown in Fig. 2d.

Therefore, the system exhibits bulk-boundary correspondence in the
deformation coordinates. In Fig. 2e, we depict the boundary state profiles of
Fig. 2c in the transformed coordinates. Remarkably, the chiral nature of the
boundary states is revealed in that alternating particles are at rest, as in the
canonical stiffness dimer, but with alternating positive and negative cou-
plings. Moreover, the mirror symmetry of the lattice is revealed, leading to
identical localization profiles for both ends.

Next, we experimentally validate the presence of such topological
states.We choose an even number of spinners for the experiments to detect
a boundary state on one end at a time for a short chain. Therefore, we
construct a spinner chain comprising eight spinners and conduct two sets of
experiments, as shown inFig. 2f, to detect topological boundary states on the
left and right ends separately. SeeMaterials andMethods formore details on
the fabrication and data acquisition.

InFig. 2g, h,wepresent theFourier spectrumof themeasured velocities
of different spinners. We observe high amplitude peaks inside the bandgap
for spinner 1 and spinner 8, indicating the presence of boundary states. In
Fig. 2i, j, we plot the spatial profiles corresponding to the high amplitude

Fig. 2 | Mixed spinner lattice. a Spinner chain with parallel and cross-connections.
The highlighted unit cell comprises spinners with distinct moments of inertia and
pre-stretched springs of stiffness k/2.bFinite spectrumof 41-spinner chainwith free
boundaries as a function of P. Localized states emerge inside the bandgap for P > 1.
Here, eω :¼ ω=ω0 is the angular frequency normalized with respect to the mid-gap
angular frequency ω0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=P

p
. c Boundary state at P = 1.8 show distinct

localization profiles at opposite edges. dWinding number evaluated in the defor-
mation framework. The parametric loop excludes and includes the origin in the

trivial and non-trivial case, respectively. e The boundary state of a chiral symmetric
system at P= 1.8 is revealed in deformation coordinates. fExperimental setup 1 and
setup 2 of spinner chains for probing the left and right boundary states, respectively.
g, h Normalized Fourier spectra of the measured velocities at different spinners
along the chain. Spinner counting starts from the left to the right. The shaded region
indicates the bandgap. i, j Measured boundary state profiles for ~ω ¼ 1 compared
against eigenanalysis.
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peaks. We find that both left and right boundary states match well with
eigenanalysis. The slight mismatch could be attributed to several effects,
such as spring misalignment, friction, and nonlinearity. Therefore, we have
demonstrated boundary states in a spinner chain with free boundaries with
hidden topology indeformation coordinates, and suchboundary states have
different profiles at different edges.

2D extension
We now extend our spinner lattice to a 2D configuration. This extension is
non-trivial because it (1) allows for the realizationof propagatingwaveswith
profiles that differ at the two opposite finite edges and (2) enables a further
generalization of the deformation framework beyond 1D lattices. We con-
struct a 2D lattice composed of spinners by stacking 1D chains (x-axis)
separated by adistance l in the other extendeddirection (y-axis) as shownby
an example in Fig. 3a. Spinners with rotational inertia I1 and I2 are coupled
to their nearest neighboring chains with effective spring constants βg 01 and
βg 02, respectively. Here, β is a scale factor that indicates the strength of inter-
chain coupling. The generalized equations of motion governing the angular
rotations θ of the two spinners within the nth unit cell (n ¼ nx êx þ ny êy)
are given as

I1€θ1;n ¼� kr2 θ2ðnx�1;nyÞ þ 2θ1ðnx ;nyÞ � θ2ðnx ;nyÞ
h i

� k̂1r
2 ψθ1ðnx ;ny�1Þ þ ð1þ χÞθ1ðnx ;nyÞ þ ψθ1ðnx ;nyþ1Þ
h i

I2€θ2;n ¼� kr2 �θ1ðnx ;nyÞ þ 2θ2ðnx ;nyÞ þ θ1ðnxþ1;nyÞ
h i

� k̂2r
2 ψθ2ðnx ;ny�1Þ þ ð1þ χÞθ2ðnx ;nyÞ þ ψθ2ðnx ;nyþ1Þ
h i

;

ð7Þ

where k̂1=2 ¼ βg 01=2 and the non-dimensional coefficients, ψ and χ, depend
upon the type of spring connection along y-axis. For example, we can use a
parallel or cross-spring connection as employed in the 1D configuration,
where the coefficients (χ, ψ) are (1, −1) and (1, 1), respectively.
Alternatively, we can use the colinear connection with the coefficients

χ ¼ 1;ψ ¼ r=ðr þ lÞ� �
along the y-axis (as shown in Fig. 3a), which could

not be used for the 1D setting earlier.
In Eq. (7), we can once again define P≔ I2/I1 and also P0 :¼ g 02=g

0
1.

We then seek the plane wave solutions of the form [θ1,n, θ2,n] =
[θ1(q), θ2(q)]e

i[q⋅n−Ωt], where q ¼ qx êx þ qy êy . We thus obtain the
eigenvalue problem: DuðP; β; qÞθðqÞ ¼ ω2θðqÞ, where θðqÞ :¼ ½θ1ðqÞ=ffiffiffiffi
I1

p
; θ2ðqÞ=

ffiffiffiffi
I2

p �, and the displacement dynamical matrix is given
by

DuðP; β; qÞ :¼ DuðP; qxÞ þ βf ðqyÞ
1 0

0 P0=P

� �
with f ðqyÞ ¼ g 01=k

� �½ð1þ χÞ þ 2ψ cosðqyÞ�. We observe that using differ-
ent spring connections along the y-direction yields different f(qy); however,
they do not alter the essential physics discussed hereafter. From hereon, we
employ the colinear connection for its experimental convenience and to
demonstrate the versatility of our design (the cases with parallel and cross-
connections along the y-axis have been discussed in Infinite Lattice in
SupplementaryNote 3 for completeness).Without any loss of generality, we
assume g 01 ¼ k 1þ l=r

� �
and l = r for simplicity. This then yields

f ðqyÞ ¼ 2þ 4cos2ðqy=2Þ. Once again, the dynamical matrix DuðP; β; qÞ
lacks chiral and inversion symmetries, making topological characterization
unclear.

Interestingly, the 2D displacement dynamical matrix with the specific
fine-tuning

P0 ¼ P

can be interpreted as a 1D displacement dynamical matrix with a qy-
dependent spectral shift, i.e., DuðP; β; qÞ ¼ DuðP; qxÞ þ βf ðqyÞI . This 2D
extension is akin to the tight-binding Hamiltonian of the dimerized square
lattice discussed in earlier works45,46. However, these works involved
inversion symmetric systems, which our system lacks in displacement
coordinates.

Fig. 3 | 2D mixed spinner lattice. a 2D lattice with identical 1D chains coupled
along the y-axis with spacing l. The inset shows the unit cell with effective stiffness
coefficients and inertia along with the corresponding Brillouin Zone (BZ) below.
Dispersion diagram with a complete bandgap (grey-shade) obtained from (b) the
displacement and (c) the deformation dynamical matrix at (P, β)= (1.8, 0.075). The
color bar denotes the relative phase between the eigenvector components. The

spectrum of (d) a ribbon finite in the x-direction and (e) a finite 2D lattice with free
left-right boundaries. For the latter, the bottom-top boundaries are fixed, and the
inset shows a snippet of the distribution of edge states in the bandgap. The color bar
denotes the edge localization, indicating the presence of edge states inside the band
gap. f, g An edge state in the finite 2D lattice in displacement and deformation
coordinates.

https://doi.org/10.1038/s42005-025-01981-x Article

Communications Physics |            (2025) 8:83 5

www.nature.com/commsphys


Now, to represent the displacement dynamical matrix in deformation
coordinates and to reveal the hidden symmetry, we employ the
following deformation coordinates as per the horizontal 1D chains:
e1;n ¼ θ1ðnx ;nyÞ � θ2ðnx ;nyÞ and e2;n ¼ θ1ðnx ;nyÞ þ θ2ðnxþ1;nyÞ and substitute
the plane wave solution. This results in the eigenvalue equation
DeðP; β; qÞeðqÞ ¼ ω2eðqÞ, in which the deformation dynamical matrix can
be recast as

DeðP; β; qÞ ¼ DeðP; qxÞ þ βf ðqyÞI :

This implies that the 2Ddeformation dynamicalmatrix is a 1Ddeformation
dynamical matrix with a qy-dependent spectral shift. Moreover, it follows
the chiral-like symmetry

σ3DeðP; β; qÞσ3 þDeðP; β; qÞ ¼ 2 1þ 1
P
þ βf ðqyÞ

� �
I

along the x-axis where the right-hand side in the equation is not a constant
but qy-dependent.

We can now characterize the topology using the vectored Zak phase47

Ze :¼
1
i

X
j¼x;y

Z þπ

�π

		eðqÞ
 ∂

∂qj

�
eðqÞ

		dqjêj;
which deduces to

Ze ¼ ðZx
e ;Z

y
e Þ ¼

ð0; 0Þ; P < 1
ðπ; 0Þ; P > 1

�
demonstrating the onset of non-trivial topological configuration along the
x-axis for P > 1. Importantly, this is irrespective of β as long as the condition
P0 ¼ P is enforced on the spring constants. The quantized values ofZx

e stem
from the fact that the deformation dynamical matrix exhibits an inversion
symmetry along the x-axis as follows

σ1De P; β; q ¼ ðqx; qyÞ
 �

σ1 ¼ De P; β; q ¼ ð�qx; qyÞ
 �

:

We plot the dispersion curve from the displacement and the deformation
dynamical matrix in Fig. 3b, c for the non-trivial case (P, β) = (1.8, 0.075)
First, we observe a complete band gap, which exists as long as
β < ∣1� 1=P∣=2. In the ΓX direction, we observe that the two dispersion
curves are symmetric aroundamid-frequency. By alsoplotting thephasesof
eigenvectors, we observe the phase reversal of a branch from Γ to X in
deformation coordinates, indicating non-trivial topology. Γ toYdirection in
deformation coordinates, however, shows no such phase reversal, therefore
complying with trivial topology along the y-axis.

In Fig. 3d, we plot the spectrum of a ribbon consisting of 41 spinners,
with free boundaries along the x-axis and Floquet boundary conditions
along the y-axis (see the 2D localization parameter in Materials and
Methods).We observe localized states on the left and right boundaries of the
ribbon in the band gap for all values of qy ∈ [−π, π]. We then consider a
finite structure with 31 and 16 spinners along the x and y-axes, respectively.
In Fig. 3e, we plot the spectrum of the finite 2D systemwith free (fixed) left-
right (top-bottom) boundaries.We observemultiple edge states in the band
gap. These edge states exhibit different localization profiles at the left and
right edges, as shown in Fig. 3f, which is a hallmark of our mixed spinner
lattice. Upon transformation to deformation coordinates, the chiral-like
symmetry is revealed, as shown in Fig. 3g, where every alternate particle is at
rest, similar to the 1D chain in the deformation framework. The lattice also
reveals themirror symmetry along thex-axis in thedeformation framework,
similar to the 1D chain.

The nature of eigenvectors for a finite system can be understood by
looking at the finite dynamical matrix. For a lattice with N andM spinners

along the x and y-axes, respectively, the displacement dynamical matrix of
size NM × NM is expressed as follows:

D finite
u ¼ Dx

u � βDy;

where⊕denotesKronecker sum,Dx
u 2 RN ×N is thefinite 1Ddisplacement

dynamical matrix of the mixed configuration (along the x-axis) and
Dy 2 RM ×M is the finite coupling matrix characterizing the coupling
between stacked 1D chains along the y-axis. This separability is achieved by
enforcing P0 ¼ P (see Finite Lattice in Supplementary Note 3 for the
detailed derivation). Therefore, the displacement eigenvectors of the finite
system can be expressed as

u 2D
i;j ¼ pi � uj; ð8Þ

for the corresponding eigenfrequencyω2
i;j ¼ βμ2i þ ω2

uðjÞ, wherewehave the
following 1D eigenvalue equations:Dypi ¼ μ2i pi andD

x
uuj ¼ ω2

uðjÞuj for all
i, j48,49. Here,⊗denotes theKronecker product between any two vectors and
not their outer product. Since the 1D chain has two edge states, b±, in our 2D
lattice,wewill have 2M edge statesof the formpi⊗b± for all i∈ {1, 2, . . . ,M}.

Similarly, in the deformation coordinates, the dynamical matrix of size
(N − 1)M × (N − 1)M is expressed as follows:

D finite
e ¼ Dx

e � βDy;

whereDx
e 2 RðN�1Þ× ðN�1Þ is thefinite 1Ddeformation dynamicalmatrix of

the mixed configuration (see Finite Lattice in Supplementary Note 3 for
details). The deformation eigenvectors of the finite system are expressed as

e 2Di;j ¼ pi � ej; ð9Þ

for the corresponding eigenfrequencyω2
i;j ¼ βμ2i þ ω2

eð jÞ, wherewehave the
following 1D eigenvalue equation, Dx

eej ¼ ω2
eðjÞej for all j. Thus, D

finite
u and

D finite
e form a quasi-isospectral pair, with (N− 1)M out ofNM eigenvalues

of D finite
u mapping to the eigenspectrum of D finite

e . The remaining M
eigenvalues of D finite

u are related to the zero modes of the 1D free-free
chain. In 2D, these are spectrally shifted, such that ω2

i ¼ βμ2i , and are
not part of the deformation dynamical matrix. Moreover, the eigenvectors
for the edge states in the 2D lattice are easily related to those in the 1D
lattice. Therefore, the chiral-like nature of edge states on both edges of the
2D lattice is naturally revealed in deformation coordinates, as shown
in Fig. 3g.

Robustness to disorder
The underlying symmetry in the deformation coordinates also helps to
discover disordered lattice configurations that lead to the topological edge
states that are robust. We define the 2D chiral-like operator as
Π2D :¼ �IM � Πx , where Πx 2 RðN�1Þ × ðN�1Þ ¼ diagðþ1;�1;þ1; :::Þ
is the finite 1D chiral operator. Π2D anti-commutes with the global defor-
mation dynamical matrix as follows

Π2DDfinite
e Π2D þ Dfinite

e ¼ 2ð1þ 1=PÞIN � βDy:

TheΠx term inΠ2D acts only on the Dx
e term inD finite

e and thus protects all
edge states in the system because Dx

e exhibits chiral symmetry12.
We perform a generalized study to determine the spectrum by intro-

ducing disorder in the system along the x-axis, i.e., quantities remain uni-
form along the y-axis. First, we takeN spinners with disorderedmoments of
inertia such that

~Ip ¼ I0pð1þ δλpÞ 8 p 2 f1; 2; :::;Ng;

where I0odd=even ¼ I1=2, λp takes random values in [−1, 1], and δ indicates
the strength of the disorder. Then, we consider interconnecting springs in
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mixed configuration with spring constants given as

~kq ¼ kð1þ δηqÞ 8 q 2 f1; 2; :::;N � 1g;

where ηq ∈ [−1, 1]. Second, we stack identical copies of the disordered 1D
chain along the y-axis coupled by pre-stretched springs with disordered
effective spring constants given as β~g 0r ¼ βg0r ð1þ δϕrÞ 8 r 2 f1; 2; :::;Ng,
where g0odd=even ¼ g 01=2 and ϕr ∈ [−1, 1].

Let eD finite
e denote the disordered global deformation

dynamical matrix. To satisfy the chiral-like symmetry, i.e.,

Π2D ~D
finite
e Π2D þ ~D

finite
e ¼ 2ð1þ 1=PÞIN � Dy , the first condition

stems form the separability aspect, i.e., eD finite
e must be of the form

~D
finite
e ¼ ~D

x
e � βDy;

where ~D
x
e 2 RðN�1Þ × ðN�1Þ is the disordered finite 1D deformation dyna-

mical matrix. This imposes the first constraint

~gi=~Ii ¼ g0i =I
0
i ) ϕi ¼ λi

for all i ∈ {1, 2, 3, . . . N}.
The second constraint stems from the action of Πx in the chiral

operator on ~D
x
e in ~D

finite
e as follows:Πx ~D

x
eΠ

x þ ~D
x
e ¼ 2ð1þ 1=PÞIN . This

imposes ~kið1=~Ii þ 1=~Iiþ1Þ ¼ kð1=I0i þ 1=I0iþ1Þ, and therefore, ηi can be
determined as

ηiðλi; λiþ1Þ ¼
λihi þ λiþ1 hiþ1=P

� �
hi þ hiþ1=P

� �

for all i ∈ {1, 2, 3, . . . N − 1}, where hx ¼ 1= 1þ δλx
� �

. Hence, we have
derived the conditions necessary to preserve the chiral-like symmetry in a
disordered spinner system.

Figure 4a, c depicts the variationof the eigenspectrumof thedisordered
finite systemof sizeN×M=31×16with respect to random(randomvalues
of λp, ηq, and ϕr for all p, q and r) and chiral-like symmetry preserving
disorders. The random disorders destabilize the edge states, with their
localization properties being strongly affected by the strength of the dis-
order, as seen in Fig. 4b for δ= 0.5. On the other hand, disorders respecting
the underlying chiral-like symmetry do not affect the edge states, and they
remain pinned to their frequencies, exhibiting extreme robustness. An edge
state sample in Fig. 4d for δ= 0.5 confirms that the localization profiles are
intact, and the deformation coordinates reveal the hidden chiral profile like
in 1D chains.

Conclusions
In summary, we have introduced a prototypical spring-mass model incor-
porating distinct spring connectivities and demonstrated both theoretically
and experimentally the presence of topological edge states with different
profiles at opposite ends. The topological nature of the lattice is uncovered
through deformation coordinates, which simultaneously reveal the under-
lying chiral andmirror symmetries.We further extend this model to a two-
dimensional setting, where precise fine-tuning is necessary to apply the
deformation framework and highlight the topologically robust nature of the
waves propagating along opposite lattice edges.

Looking ahead, thedesign spaceprovidedbyour spinner-basedmodels
offers a valuable framework for exploring various tight-binding 2Dmodels.
An intuitive extension of our work is engineering interfaces in 1D and 2D
lattices for various profiles of interface localized states (see Supplementary
Note 4). Additionally, this approach opens opportunities for investigating
novel classes of higher-order topological lattices36, with diverse boundary
conditions and localization profiles based on hidden symmetries.

Fig. 4 | Disorder analysis. Variation of the averaged (over 50 realizations) eigen-
spectrum of the lattice of size N ×M = 31 × 16 with free left-right and fixed top-
bottom boundaries with respect to (a) random and (c) chiral-like disorders (sym-
metry-preserving). δ denotes the corresponding disorder strength. The zoomed
plots show that the edge states are unstable and stable against increasing disorder

strength. An edge state sample in displacement and deformation coordinates for (b)
random and (d) chiral-like disorders at δ = 0.5 The latter case demonstrates the
unaffected localization and chiral profile of edge states in displacement and
deformation coordinates, respectively.
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Methods
Setup fabrication
The spinners, along with the bearings (608RS), are mounted on a 3D-
printed ABS base. Each spinner is individually 3D-printed using tough
PLA (mass density ρ= 1.20 g/cm3). Four slots are incorporated into each
spinner formetal inserts. Aluminum (density ρ= 2.70 g/cm3) and copper
(density ρ = 8.94 g/cm3) cylindrical stubs of the following dimensions:
diameter ϕ = 1 cm and height h = 2 cm are alternately utilized in the
spinners to impart different moments of inertia. Additional holes are
provided in the spinners for M2 screws for attaching tension springs. The
spinners are coupled to their nearest neighbors by alternating parallel and
cross-connections. The positioning of the spinners and spring connec-
tions is meticulously arranged to maintain (1) uniform pre-stretch in the
springs throughout the setup and (2) thedesired angular orientation of the
cross-connections.

Setup parameters
In order to normalize frequencies obtained from the finite chains, the nat-
ural frequency of angular oscillations of a single Aluminum spinner
(f Al ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kr2=I1

p
=2π) is determined through small impact tests. The aver-

aged Fourier spectrum of the time series data obtained from the impacts
revealed fAl ≈ 12.0675 Hz. Similarly, the natural frequency of angular
oscillations of a single copper spinner (f Cu ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kr2=I2

p
=2π) is obtained as

fCu ≈ 9.0766 Hz. The ratio f Al=f Cu ¼
ffiffiffiffiffiffiffiffiffiffi
I2=I1

p
¼ ffiffiffi

P
p

then reveals
P ≈ 1.7676 for both experimental setups. Proper bearing lubrication was
ensured through WD40, leading to averaged damping ratios ζAl ≈ 0.0173
and ζCu= 0.0164.

Modeshape extraction
The entire assembly is then subjected to automated impulse excitation
through a servo motor (Towerpro SG90), and the synchronized time series
data of all spinners are recorded through a laserDoppler vibrometer (LDV).
The Fourier spectrumof the time series data for all spinners is obtained. The
frequencies are first normalized by fAl followed by the mid-gap angular
frequency ω0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=P

p
. The edge modes are obtained by probing the

magnitude and phase of the Fourier data at ~ω ¼ 1 for all spinners. Finally,
the edgemodes are normalized with respect to themaximummagnitude of
angular displacements.

Localization parameters
For finite 1D systems, we utilize relative IPR (Inverse Participation Ratio)
defined as follows

IPRrel
i ¼ 1

IPRmax

X
j

jviðjÞj4

for an eigenvector viwhere vi(j) denotes its jth component. This ensures that
the boundary states have a relative IPR of unity.

For finite 2D systems, the displacement eigenvectors are obtained by
the tensor product of 1D eigenvectors, as shown in Eq. (8), the eigenvectors
of the dynamical matrixDy only encode the phase information along the y-
axis. Therefore, the angular displacements for a single row along the x-axis
are enough to investigate localization along the left and right edges.
Assuming a lattice with N and M spinners along the x and y-axes, we
consider the truncated displacement eigenvector u 2D

i;j 1;Nð Þ obtained by
isolating the first N components of the displacement eigenvector u 2D

i;j and
calculate the relative IPR as follows:

IPRrel
i;j ¼

1
IPRmax

X
p

ju2Di;jðpÞ 1;Nð Þj4

where u 2D
i;jðpÞ 1;Nð Þ denotes the pth component of the truncated displace-

ment eigenvector. Here, too, the edge states have a relative IPR of unity.

Data availability
All relevant data sets that support the results in this work are available from
the corresponding author upon reasonable request.
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