
PHYSICAL REVIEW E 108, 054224 (2023)

Dirac solitons and topological edge states in the β-Fermi-Pasta-Ulam-Tsingou dimer lattice
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We consider a dimer lattice of the Fermi-Pasta-Ulam-Tsingou (FPUT) type, where alternating linear couplings
have a controllably small difference and the cubic nonlinearity (β-FPUT) is the same for all interaction pairs. We
use a weakly nonlinear formal reduction within the lattice band gap to obtain a continuum, nonlinear Dirac-type
system. We derive the Dirac soliton profiles and the model’s conservation laws analytically. We then examine the
cases of the semi-infinite and the finite domains and illustrate how the soliton solutions of the bulk problem can
be glued to the boundaries for different types of boundary conditions. We thus explain the existence of various
kinds of nonlinear edge states in the system, of which only one leads to the standard topological edge states
observed in the linear limit. We finally examine the stability of bulk and edge states and verify them through
direct numerical simulations, in which we observe a solitonlike wave setting into motion due to the instability.
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I. INTRODUCTION

The study of systems of the Fermi-Pasta-Ulam-Tsingou
(FPUT) type [1] has an exciting and long history within non-
linear science [2]. More recently, the relevant topics received
substantial attention due to experimental connections [3]. For
instance, granular crystals have offered a reasonably mature
platform where various nonlinear phenomena are explored,
e.g., solitons, discrete breathers, and dispersive shock dynam-
ics [4–7]. Additionally, diverse platforms based on magnets
[8,9] and origami cells [10] have also been considered.

On the other hand, the exploration of nonlinear partial dif-
ferential equations (PDEs) of the Dirac type has also recently
gained considerable traction. This is due to the emergence
of such equations for boson gases confined in honeycomb
lattices [11,12] and light propagation in photorefractive hon-
eycomb lattices [13,14]; the latter theme has allowed for the
observation of key features such as conical diffraction, among
others. These efforts have led to a wide range of mathematical
works devoted to studying solitary waves and their stability in
such systems [15,16].

Furthermore, the third axis of problems with substantial
research activity has been band topology and its potential
impact on designing new materials and structures for var-
ious engineering applications. Relevant studies range from
the fundamental properties of electronic materials [17] to the
engineering of optical lattices in cold-atom systems [18] and
from topological photonics [19] to applications in phononic
and acoustic systems [20,21]. A central role in such works has
been played by the so-called bulk-boundary correspondence
[22]. This has enabled an understanding (based on infinite or
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bulk materials) of how finite or semi-infinite systems may be-
have in the presence of corners, edges, and surfaces [23–25].

The present work treads at the nexus of all three above
directions. In particular, we aim to examine a dimer system
of the FPUT type. Exponentially localized in space, periodic
in time solutions in the form of the so-called discrete breathers
[26,27] have been identified in such systems in several earlier
works [28–30]. Typically, in such problems, a variation of the
mass between the elements of the dimer lattice is considered.
Here, however, we consider a model in the spirit of numer-
ous works motivated by the so-called Su-Schrieffer-Heeger
(SSH) model [31], a recent popular platform for controlling
the band-gap features and associated edge modes [19]. More
concretely, we explore a dimer in the linear couplings [32,33]
while we preserve the softening nonlinearity of the same
(β-FPUT type) across all the bonds (intersite) of the lattice.
It is worth noting that a very similar linear setting, but for
an on-site (rather than intersite) nonlinearity, has been very
recently explored in Ref. [34]. This work aims to provide an
analysis (using both continuum methods and direct numerical
simulations) of the prototypical nonlinear patterns that can
arise in bulk and the edges of the nonlinear lattice model under
consideration.

Our presentation is structured as follows. Section II intro-
duces the model and briefly discusses its properties in the
linear regime. In Sec. III, by leveraging a formal continuum
limit, we are led naturally to a nonlinear Dirac equation. We
find that the nonlinearity of the derived Dirac model does not
match well-established cases, such as the Soler (Gross-Neveu)
or the (integrable) massive Thirring model [15,16]. Never-
theless, inspired by related work, such as that of Ref. [35],
we devise a sequence of linear and nonlinear transformations
that ultimately allows us to compute the stationary soliton
of the continuum approximation. Part of our motivation for
developing the relevant reduction stems from the existence of
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FIG. 1. (a) FPUT dimer lattice with equal masses connected
with nonlinear springs with two different linear stiffnesses. The box
denotes the unit cell. (b) Dispersion diagram of the linear system
(i.e., when the nonlinear coefficient � = 0). (c) Schematic of the
amplitude-dependent edge state and the Dirac soliton residing inside
the band gap.

established stability criteria for PDEs of the nonlinear Dirac
type [36] that we intend to leverage to suggest the stability
of the identified waveforms. In Sec. IV we explore how to
adapt the relevant solutions to the context of a semi-infinite
(i.e., with one end being bounded) continuum. In Sec. V
we analyze the nonlinear solutions in the bulk and edges of
the finite lattice and compare them with ones obtained from
solving the PDEs. In Sec. VI we summarize our findings
and present some exciting directions for future studies. The
Appendices complement our presentation with some of the
technical details of the system.

II. MODEL SETUP

We consider a periodic chain made of two alternating
springs with a weak cubic nonlinearity, as shown in Fig. 1(a).
The nondimensional equations of motion for the two particles
inside the nth unit cell can be written as follows [37]:

ξ̈1,n = (1 + γ )(ξ2,n−1 − ξ1,n) + �(ξ2,n−1 − ξ1,n)3

− (1 − γ )(ξ1,n − ξ2,n) − �(ξ1,n − ξ2,n)3,

ξ̈2,n = (1 − γ )(ξ1,n − ξ2,n) + �(ξ1,n − ξ2,n)3

− (1 + γ )(ξ2,n − ξ1,n+1) − �(ξ2,n − ξ1,n+1)3. (1)

Here ξm,n denotes the normalized displacement of the mth
particle inside the nth cell, 1 − γ and 1 + γ represent the
linearized stiffnesses of two springs, and � is the nonlinearity
parameter. We take the same nonlinearity parameter for all
springs to make the analytical treatment simpler.

In the linear limit (� → 0), the system represents a
periodic chain consisting of two alternating springs with stiff-
nesses 1 − γ and 1 + γ . The dispersion relation has two
branches as shown in Fig. 1(b). By assuming γ > 0, at the
edge of Brillouin zone, i.e., at wave number q = ±π , the
acoustic (lower) and optical (upper) cutoff frequencies are
given by

�2
ac = 2(1 − γ ), �2

op = 2(1 + γ ),

respectively. Thus, the dispersion curve has a band gap (de-
fined in terms of the squared frequency here) of width �2

op −
�2

ac. Moreover, the eigenmode corresponding to �2
ac is given

by

(ξ1,n, ξ2,n) = (A,−A) exp(iqn) = (−1)n(A,−A),

where A is the amplitude of oscillation. Physically, this means
that the two particles inside the unit cell oscillate out of phase.
Similarly, the eigenmode at �2

op is given by

(ξ1,n, ξ2,n) = (A, A) exp(iqn) = (−1)n(A, A),

representing the in-phase motion of particles inside the unit
cell. The prefactor (−1)n is due to the corresponding wave
number. We will utilize these characteristics to discover
amplitude-dependent solitons and edge states residing in this
band gap, as illustrated in Fig. 1(c). Having set up the relevant
model, we now turn to the analysis of its prototypical soliton
solutions over the infinite lattice.

III. INFINITE CONTINUUM

We focus on the weakly nonlinear wave solutions, i.e., � =
ε1�̃ with ε1 � 1, inside the band gap for the wave number
q = π . Moreover, we consider a small band gap such that
γ = ε2γ̃ with ε2 � 1. We further assume that nonlinearity
and band gap are of the same order, i.e., ε1 = ε2 = ε. We then
look for slowly varying solutions around frequency �. The
structure of the two eigenmodes at q = π suggests that we
look for solutions with the ansatz

ξ1,n = (−1)n

2
[u(z, τ ) exp(i�t ) + u∗(z, τ ) exp(−i�t )],

ξ2,n = (−1)n

2
[v(z, τ ) exp(i�t ) + v∗(z, τ ) exp(−i�t )],

(2)

where the asterisk denotes complex conjugate, z = εn, and
τ = εt . We substitute the ansatz in Eq. (1) and proceed for-
mally to a continuum approximation; note that, to do so,
we are partly motivated by its successes in similar problems
[38,39] and partly through an a posteriori comparison with the
lattice dynamical results. We thus consider that the functions
u and v are approximated by continuous functions of the
position (and time), and expanding in the Taylor series, we
equate the various orders of ε.

At O(ε0), we obtain � = √
2. In the dimer model pre-

sented in Sec. II, this frequency corresponds to the midgap

frequency �m =
√

(�2
ac + �2

op)/2 = √
2. This makes sense

because as the stiffness difference γ approaches zero (the
leading-order dynamics), the band gap in our dimer lattice
goes to the limit of the monatomic lattice with frequency
� = √

2 at q = π .
At O(ε1), however, we obtain the following system of

nonlinear PDEs for the solutions around �m = √
2:

−4i
√

2
∂u(z, τ )

∂τ
= −2

∂v(z, τ )

∂z
+ 4γ̃ v(z, τ )

+ 3�̃[|u(z, τ )|2 + 2|v(z, τ )|2]u(z, τ )

+ 3�̃v(z, τ )2u∗(z, τ ),
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−4i
√

2
∂v(z, τ )

∂τ
= 2

∂u(z, τ )

∂z
+ 4γ̃ u(z, τ )

+ 3�̃[2|u(z, τ )|2 + |v(z, τ )|2]v(z, τ )

+ 3�̃u(z, τ )2v∗(z, τ ). (3)

In the linear limit �̃ → 0, these PDEs closely follow the
dispersion curve obtained for the discrete lattice in Eq. (1) (see
Appendix A for comparison). Interestingly, we can further
simplify these PDEs using a suitable rotation (together with a
simple rescaling) and obtain a bispinor nonlinear Dirac (NLD)
equation in the form

i
∂ψ1

∂τ
= −∂ψ2

∂s
− M̃ψ1 + |ψ1|2ψ1,

i
∂ψ2

∂τ
= ∂ψ1

∂s
+ M̃ψ2 + |ψ2|2ψ2. (4)

Here ψ1 = G̃(u + v), ψ2 = G̃(u − v), G̃ =
√

−3�̃/4
√

2, s =
2
√

2z, M̃ = γ̃ /
√

2. We consider �̃ < 0 for the softening
nonlinearity of interest herein. Also, the tilde indicates the
normalized system parameters of O(1). It is worth pointing
out that these equations are invariant under the transformation
s → −s, ψ1 → ψ1, and ψ2 → −ψ2. Therefore, if the initial
conditions of the PDEs ψ1(s) and ψ2(s) are even and odd
functions of s, respectively, the solution would preserve this
symmetry for all times. It is relevant to point out here that
the presence of nonlinearities involving self- and cross-phase
modulation (in the language of nonlinear optics) precludes the
existence of Lorentz invariance in the model derived herein,
contrary, e.g., to what is the case in the setting discussed in
[40]. Note that the same procedure can be used to obtain the
NLD equations for the Klein-Gordon lattice with the on-site
nonlinearity. The latter model has been explored in consider-
able detail in the very recent work [34].

It is worth mentioning some key differences between this
system and the dimer models, in which the envelope dynamics
inside the band gap is governed by the nonlinear Schrodinger
(NLS) equation [41]. In fact, the latter is the case with a
large band gap γ ≈ O(1) and weaker nonlinearity � ≈ O(ε2),
where the slow scales z = εn and τ = ε2t govern the envelope
solutions. However, it was shown by Hu et al. [42] that a small
band gap, as is the case here, could lead to new kinds of gap
solutions governed by coupled-mode equations [43].

Next, following Ref. [35], we further employ the transfor-
mations

ψ1 → (ψa + ψb)eiω̃τ , ψ2 → −i(ψa − ψb)eiω̃τ

and obtain

∂ψa

∂τ
= ∂ψa

∂s
− iω̃ψa + iM̃ψb

− i(|ψa|2 + |ψb|2)ψa − i(ψaψ
∗
b + ψ∗

a ψb)ψb,

∂ψb

∂τ
= −∂ψb

∂s
+ iM̃ψa − iω̃ψb

− i(|ψa|2 + |ψb|2)ψb − i(ψaψ
∗
b + ψ∗

a ψb)ψa, (5)

where ω̃ can be interpreted as the frequency offset from the
midgap frequency �m. The band-gap region corresponds to

ω̃ ∈ [−M̃, M̃]. It is relevant to point out here that the re-
sulting class of models of Eq. (5) is strongly reminiscent of
the one describing the propagation of slow Bragg solitons in
nonlinear refractive periodic media; these models were widely
studied over 30 years ago in pioneering studies such as those
in [44,45]. We will leverage techniques for identification of
the solitons in such systems to obtain exact solutions for the
stationary waveforms in what follows.

A. Stationary solutions

We now seek stationary solutions for ω̃, which corresponds
to a frequency � = �m + εω̃ in the dispersion diagram. Such
stationary solutions do not depend on time and hence Eq. (5)
is reduced to the form

dψa

ds
= i[ω̃ψa − M̃ψb + (|ψa|2 + |ψb|2)ψa

+ (ψaψ
∗
b + ψ∗

a ψb)ψb],

dψb

ds
= i[M̃ψa − ω̃ψb − (|ψa|2 + |ψb|2)ψb

− (ψaψ
∗
b + ψ∗

a ψb)ψa]. (6)

Next we use a polar decomposition into amplitude and phase
variables, namely,

ψa(s) = φa(s) exp{i[θ0(s) + θ (s)]/2},
ψb(s) = φb(s) exp{i[θ0(s) − θ (s)]/2},

with φa(s), φb(s) � 0, and arrive at the following four coupled
ordinary differential equations (ODEs) for φa(s), φb(s), θ0(s),
and θ (s):

dφa

ds
= φb sin θ (2φaφb cos θ − M̃ ), (7)

dφb

ds
= φa sin θ (2φaφb cos θ − M̃ ), (8)

dθ

ds
= 2ω̃ +

(
φa

φb
+ φb

φa

)
(9)

×[cos θ (2φaφb cos θ − M̃ ) + 2φaφb], (10)

dθ0

ds
=

(
φa

φb
− φb

φa

)
[cos θ (M̃ − 2φaφb cos θ )]. (11)

By dividing Eq. (7) by Eq. (8) we get

dφa

dφb
= φb

φa
, (12)

which upon integration yields

φ2
a − φ2

b = c. (13)

Here the integration constant c can be found from the bound-
ary conditions.

B. Dirac soliton

In this study, we are interested in localized soliton solutions
of this continuum approximation so that we could translate
them into approximate solutions (or initial guesses in the
context of our numerical computations) of the discrete system
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FIG. 2. Infinite continuum NLD findings. (a) Phase portrait for
Eqs. (14) and (15) at ω̃ = 0. The colormap denotes the value of
the Hamiltonian that corresponds to each trajectory. The heteroclinic
orbit, which corresponds to H = 0, is shown with the black line.
(b) Dirac soliton profile (ρ(s), θ (s)) that corresponds to the hetero-
clinic orbit. (c) Dirac soliton profile (U (z),V (z)). (d) Energy and
power, the conserved quantities of the NLD equation, obtained for
the soliton solution inside the band gap.

breather waveforms. Therefore, we impose the boundary con-
ditions φa(s) → 0 and φb(s) → 0 as s → ∞. This translates
into vanishing u, v, and ξ at infinity, and c = 0 from Eq. (13).
Assuming φa(s) and φb(s) to be non-negative, we thus have
φa(s) = φb(s) for s ∈ (−∞,∞). A solution decaying to zero
also as s → −∞, e.g., a soliton,1 naturally satisfies this con-
dition. Further, since c = 0, we define ρ ≡ φ2

a = φ2
b and cast

Eqs. (7)–(11) into the form
dρ

ds
= 2ρ sin θ (2ρ cos θ − M̃ ), (14)

dθ

ds
= 2 cos θ (2ρ cos θ − M̃ ) + 4ρ + 2ω̃, (15)

dθ0

ds
= 0. (16)

Equation (16) can readily be integrated, leading to θ0(s) = c1.
This implies that

ψa(s) =
√

ρ(s) exp(ic1/2) exp[iθ (s)/2],

ψb(s) =
√

ρ(s) exp(ic1/2) exp[−iθ (s)/2],

and thus in the NLD picture we have

ψ1(s, τ ) = 2
√

ρ(s) cos[θ (s)/2] exp[i(ω̃τ + c1/2)],

ψ2(s, τ ) = 2
√

ρ(s) sin[θ (s)/2] exp[i(ω̃τ + c1/2)].

In what follows, we choose c1 = 0 for simplicity, leveraging
the (overall) gauge invariance of the equations.

1It should be understood here that the term soliton is used in a
looser sense in which it describes spatially localized waveforms
(rather than the narrower meaning of a solution of an integrable
nonlinear partial differential equation).

The remaining two equations [Eqs. (14) and (15)] in ρ

and θ are decoupled from the third. Therefore, to get better
insight, we plot a two-dimensional (2D) phase portrait for
these equations in Fig. 2(a) at a prototypical frequency
(ω̃ = 0 representing the middle of the gap). We choose
γ = � = 0.02 for all the studies hereafter, which translates to
ε = 0.01 and γ̃ = �̃ = 2. The phase portrait has a number of
fixed points, including the two saddles at (ρ, θ ) = (0,±π/2).
Furthermore, to analytically track the solutions, Eqs. (14) and
(15) can be seen as a dynamical system with the Hamiltonian

H (ρ, θ ) = −2ω̃ρ − 2ρ2 + 2M̃ρ cos θ − 2ρ2cos2θ. (17)

Since we are looking for a localized solution, i.e., ρ → 0
for s → ±∞, this solution is represented by the heteroclinic
orbit, namely, the trajectory that connects the two saddle
points for which ρ = 0. The corresponding value of the
Hamiltonian for this trajectory is zero, H = 0. We thus obtain

ρ = M̃ cos θ − ω̃

1 + cos2θ
, (18)

which we substitute in Eq. (15) to get

dθ

ds
= 2(M̃ cos θ − ω̃). (19)

By integrating we obtain

θ (s) = 2 tan−1

(
M̃ − ω̃√
M̃2 − ω̃2

tanh
[√

M̃2 − ω̃2(s − s0)
])

.

(20)

Here s0 is the constant of integration. For the soliton solutions
in the domain s ∈ (−∞,∞), we can choose any s0 because
those represent shifted members of the family of solitons
(rendered possible due to the translational invariance of the
underlying model). For convenience, we choose a soliton
centered at s = 0; therefore,

θ (s) = 2 tan−1

(
M̃ − ω̃√
M̃2 − ω̃2

tanh
[√

M̃2 − ω̃2s
])

. (21)

In Fig. 2(b) we show the soliton profile. We note that the
amplitude vanishes as s → ±∞. However, the phase reverses
from −π/2 to π/2. The latter indicates its similarity to a
topological soliton.

Finally, ρ(s) and θ (s) can be used to obtain

ψa(s) =
√

ρ(s) exp[iθ (s)/2], (22)

ψb(s) =
√

ρ(s) exp[−iθ (s)/2], (23)

ψ1(s, τ ) = 2
√

ρ(s) cos[θ (s)/2] exp(iω̃τ ), (24)

ψ2(s, τ ) = 2
√

ρ(s) sin[θ (s)/2] exp(iω̃τ ), (25)

u(z, τ ) = U (z) exp(iω̃τ ), (26)

v(z, τ ) = V (z) exp(iω̃τ ), (27)

054224-4



DIRAC SOLITONS AND TOPOLOGICAL EDGE STATES IN … PHYSICAL REVIEW E 108, 054224 (2023)

where s = 2
√

2z and

U (z) =
√

2ρ(s)

G̃
sin

(
π

4
+ θ (s)

2

)
,

V (z) =
√

2ρ(s)

G̃
sin

(
π

4
− θ (s)

2

)
.

In Fig. 2(c) we show the soliton profile at ω̃ = 0 in terms of
U (z) and V (z).

It is relevant to point out here (both for analytical and
for numerical purposes) that it is possible to identify other
trajectories of the dynamical system as well. In particular, a
positive finite value of H leads to a quadratic equation for ρ

that can be solved explicitly in terms of θ and back substituted
into the ODE for dθ/ds in order to retrieve the corresponding
periodic orbits from the integration of the ODE for θ = θ (s).

C. Conserved quantities

We now discuss the frequency dependence of the con-
served quantities of the NLD equations shown in Eq. (4). First,
the power of the NLD equations is given as

P(ω̃) =
(

1

4G2
√

2

) ∫ ∞

−∞
(|ψ1|2 + |ψ2|2)ds, (28)

where the factor in front of the integration, which is indepen-
dent of the frequency, is introduced to scale the expression
and compare it with the total lattice energy of the stationary
solutions of Eq. (1) (see Appendix B for details). For the
stationary soliton [Eq. (21)], the power can thus be deduced
to be

P(ω̃) =
(

1

2G2

)[
tan−1

(
1 +

√
2(M̃ − ω̃)

M̃ + ω̃

)

− tan−1

(
1 −

√
2(M̃ − ω̃)

M̃ + ω̃

)]
, (29)

where G2 = εG̃2. In Fig. 2(d) we plot the power, which
increases monotonically with the decrease in frequency. In
line with the work of [36], the Vakhitov-Kolokolov criterion
about the sign of the derivative of P with ω̃ here suggests the
stability of the solitons.

Similarly, we write another key conserved quantity, the
energy E , for Eq. (4) as

E =
∫ ∞

−∞

(
ψ∗

1
∂ψ2

∂s
− ψ∗

2
∂ψ1

∂s
+ M̃

2
(|ψ1|2 − |ψ2|2)

− 1

2
(|ψ1|4 + |ψ2|4)

)
ds. (30)

For the stationary soliton [Eq. (21)], the energy reduces to

E (ω̃) =
√

2M̃ tanh−1

⎡
⎣

√
1

2

(
1 − ω̃2

M̃2

)⎤
⎦. (31)

In Fig. 2(d) we observe that, as opposed to the power, the
energy changes nonmonotonically as a function of frequency.
However, it is important to point out that the energy maintains
a definite sign and does not have a zero crossing. This is also

in line with the absence of instability according to the second
criterion of the work of [36] in the context of Dirac equations.
This criterion associates the zero crossings of the energy with
a change of stability.

In summary, both stability criteria associated with non-
linear Dirac PDEs suggest the absence of instabilities for
the localized waveforms examined herein. While, given the
reduced nature of the NLD equation, the stability findings
from these criteria are merely suggestive of the absence of
a point spectrum (i.e., isolated linearization eigenvalue pair)
instability for the breathing waveforms identified herein, we
will see below that our numerical computations corroborate
such findings. As an aside, we note that the translational
invariance of the NLD PDE is tantamount to the conservation
of linear momentum. However, since this latter conservation
law is not directly related to the stability criteria of [36], we
do not examine the latter in detail herein.

IV. SEMI-INFINITE CONTINUUM

Up to now our approach has been general in terms of
obtaining localized solutions in the continuum approximation
of the infinite lattice limit. We now seek decaying (edge)
solutions for a semi-infinite domain s ∈ [0,∞). Recall that
Eq. (20) was derived by imposing vanishing amplitudes only
at s → ±∞. Therefore, we can construct nonlinear edge so-
lutions (finite at one edge and decaying as one moves farther
away) with the same expression as given in Eq. (20) as long
as θ (0) satisfies the given boundary condition at the edge.

Though any θ can be chosen at the boundary to obtain the
corresponding edge solution, we are interested in some spe-
cial cases, e.g., θ (0) = −π/2 [U (0) = 0], θ (0) = 0 [U (0) =
V (0)], and θ (0) = π/2 [V (0) = 0]. The physical meaning of
such boundary conditions will be evident in the next sec-
tion when we deal with a finite discrete chain. However,
before moving further, we can reach some important conclu-
sions.

We know that θ (s) varies spatially from
θ (s) = − cos−1(ω̃/M̃ ) to θ (s) = cos−1(ω̃/M̃ ) in an infinite
continuum [note the saddle points for Eqs. (14) and (15)].
Also, ω̃ ∈ [−M̃, M̃] inside the band gap. Therefore, θ (s)
in Eq. (20) obtained for an infinite chain will satisfy
the boundary conditions θ (0) = −π/2 [U (0) = 0] and
θ (0) = π/2 [V (0) = 0] only for ω̃ � 0, i.e., below the
midgap frequency �m. However, the boundary condition
θ (0) = 0 [U (0) = V (0)] will be satisfied for all ω̃ inside the
band gap.

A. Boundary with θ(0) = π/2 [V (0) = 0]

For θ (0) = π/2, Eq. (20) yields

s0 = − 1√
M̃2 − ω̃2

tanh−1

(√
M̃ + ω̃

M̃ − ω̃

)
∀ ω̃ � 0. (32)

We observe that a nonzero s0 simply means that we have a
Dirac soliton which is moved to the −s axis by a distance of
s0 (=2

√
2z0). We therefore get the edge solution for the do-

main s ∈ [0,∞). We calculate the corresponding power from
Eq. (28) by changing the integration limits to account for the
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FIG. 3. Semi-infinite continuum NLD results. (a) Power of non-
linear edge states and Dirac solitons inside the band gap. (b) Edge
state (nonlinearity modified) for the boundary with θ (0) = π/2
[V (0) = 0] at ω̃ = −M̃/2. The profile is a truncation of a shifted
Dirac soliton (gray). (c) Edge state (nonlinearity induced) for the
boundary with θ (0) = −π/2 [U (0) = 0] at ω̃ = −M̃/2. The profile
is the other truncated part of a shifted Dirac soliton (gray).

finite boundary. In Fig. 3(a) we show the power as a function
of frequency by a blue dashed line. Such edge solutions exist
only for ω̃ � 0. In the linear limit with vanishing power, these
solutions tend to ω̃ = 0, the midgap frequency. We show the
Dirac soliton in gray in Fig. 3(b) for ω̃ = −M̃/2. Since the
profile intersects V = 0 at a finite z for ω̃ < 0, nonlinear edge
states can be considered a part of Dirac solitons, as shown in
blue.

Interestingly, in the linear limit, the intersection of the
soliton profile with V = 0 occurs at z (or s) → ∞ for ω̃ = 0.
From Eq. (21), we know for ω̃ = 0, we get θ → π/4
as s → ∞. Therefore, from Eq. (14) we deduce that
ρ ∝ exp (−2M̃s), or in the NLD setting [ψ1, ψ2] ∝
exp (−M̃s). This is the well-known Jackiw-Rebbi solution
[18,46] in the linear Dirac framework; however, it is an
edge solution, which is different from the standard interface
solution between two media with different Dirac masses. We
conclude that when nonlinearity is involved, this edge state
is modified and a family of solutions is generated, as shown
in blue in Fig. 3(a). We call them nonlinearity-modified edge
states.

B. Boundary with θ(0) = −π/2 [U (0) = 0]

Similarly, if we have θ (0) = −π/2, Eq. (20) yields

s0 = 1√
M̃2 − ω̃2

tanh−1

(√
M̃ + ω̃

M̃ − ω̃

)
∀ ω̃ � 0. (33)

This is equivalent to a Dirac soliton having moved to the +s
axis by a distance of s0. In Fig. 3(a) we show the power as
a function of frequency by a green dashed line. As discussed
earlier, such edge solutions exist only for ω̃ � 0. At ω̃ = 0,
these bifurcate from the Dirac soliton that lies in the bulk.
Note that the bifurcation point corresponds to s0 → ∞. This
means that the edge solution tends to the whole spatial profile
of the Dirac soliton and therefore their powers tend to have
the same value at the bifurcation point.

Contrary to the edge states discussed in the preceding
section, the edge states, in this case, do not have any linear
counterparts for vanishing power. Therefore, these sponta-

neously arise due to nonlinearity for ω̃ � 0. Figure 3(c)
highlights the profile of such nonlinearity-induced edge states.
These are reminiscent of nonlinear edge states found in di-
atomic lattices with two different masses [47].

Finally, we calculate the edge states for the boundary with
θ (0) = 0 [U (0) = V (0)], which exist (the edge states) for the
entire band gap (Appendix C). Again, these states are also
nonlinearity-induced edge states with no linearized edge state
at vanishing powers.

V. FINITE LATTICE

After analyzing the bulk and edge solutions in an infinite
and a semi-infinite continuum, we now consider a finite dis-
crete lattice and calculate nonlinear solutions inside the band
gap. In addition, we investigate the instabilities that cause the
localized solution to delocalize in space.

It is known that the FPUT lattice shown in Fig. 1(a) in
its linear limit corresponds to a finite-frequency SSH chain
[33]. Such a lattice supports topologically protected edge
states in the case of fixed boundary conditions. However,
this happens when the boundary is symmetry preserving,
which physically means that it does not cut the unit cell.
By contrast, a symmetry-breaking boundary, which cuts the
unit cell, does not support an edge state [37]. It is at this
point that we recognize the physical interpretation of specific
boundary conditions that we chose in the preceding section.
The boundary that supports a topological edge state in the
linearized finite lattice resembles V (0) = 0 in the continuum
limit. When nonlinearity is turned on, this edge state is re-
ferred to as a nonlinearity-modified edge state. Similarly, the
boundary that does not support a topological edge state in the
linearized finite lattice resembles U (0) = 0 in the continuum
limit. However, when nonlinearity is turned on, we witness
nonlinearity-induced edge states at finite power. In this sec-
tion, we will show such edge states in the finite lattice and
how they compare with their continuum counterparts.

A. Bifurcation diagrams

We take a lattice with 500 particles with fixed ends. The
right boundary is kept free when obtaining edge solutions on
the left edge. We use Newton’s method to find the family of
nonlinear periodic solutions for the lattice. By considering the
linear edge state and the first state in the optical band as our
initial guess, we are able to converge to the nonlinear solution
and continue it over frequency. For the nonlinearity-induced
edge states, however, this method does not work since there is
no linear limit of such solutions. We tackle this by preparing
the initial guess near the acoustic band by truncating the
bulk solutions at U → 0 as shown in Fig. 3(c). Note that
we use symmetry-preserving boundaries in the finite lattice
to obtain the nonlinearity-modified edge states. In contrast,
symmetry-breaking boundaries are used to obtain the bulk
and nonlinearity-induced edge states. In this way, we generate
the bifurcation diagram for our discrete lattice as shown in
Fig. 4(a). We observe a similar trend as predicted earlier in
Fig. 3(a) with the existence of discrete breather analogs of the
Dirac (bulk) solitons, nonlinearity-modified edge states, and
nonlinearity-induced edge states.
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FIG. 4. Finite lattice results. (a) Bifurcation diagram obtained
through the nonlinear continuation of the linear edge state (blue)
and the first optical state (gray). In green is the nonlinearity-induced
edge state. Their lattice energy is compared with the nonlinear states
found for the continuum (dashed line). (b) Relative energy differ-
ence Er between discrete and continuum solutions plotted inside the
band gap for the bulk and edge solutions. (c) Maximum amplitude
of the corresponding FMs indicating the extent of instability of
discrete nonlinear solutions. (d) Comparison of bulk solutions at
a frequency near the optical band (� = 1.426) and acoustic band
(� = 1.401). (e) and (f) Comparison of (e) nonlinearity-modified
and (f) nonlinearity-induced edge states, respectively, at a frequency
near the midgap (� = 1.413) and acoustic band (� = 1.401).

To quantify the difference of lattice energy between the
continuum model (Econt) and the discrete model (Edisc), we
define a relative energy parameter

Er = (Edisc − Econt )/Econt.

In Fig. 4(b) we show Er as a function of frequency. We
notice that Er → 0 for the nonlinearity modified edge state
in its linear limit. This makes sense because (γ , �) ≈ O(ε)
and the zeroth-order dynamics is the linear limit at the
midgap frequency �m, where the edge state lies. For the
bulk breather, Er also decreases as it moves closer to the
optical band. We observe a sudden rise in Er very close to
the optical band, which could be due to the decrease in lo-
calization of the bulk breather and its interaction with finite
boundaries. In Figs. 4(d), 4(e), and 4(f) we show the com-
parison of discrete and continuum solutions for bulk breather,
nonlinearity-modified edge state, and nonlinearity-induced
edge state, respectively, at different frequencies inside the
band gap. Overall, we observe an excellent match between
discrete and continuum solutions, demonstrating that the finite
lattice also supports the nonlinear solutions predicted by the
nonlinear Dirac equations for (γ , �) ≈ O(ε). We would like
to highlight that at the bifurcation point (at the midgap), the
edge state resembles the whole spatial profile of the Dirac
soliton as discussed in the preceding section; therefore, their
energies tend to be the same for the lattice.
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FIG. 5. Transient dynamics of discrete Dirac solitons in the finite
lattice. (a) Soliton profile at � = 1.421 (even and odd locations are
highlighted with different colors) and the transient dynamics when
the profile is given as the initial condition to the lattice. The colormap
shows the energy density. (b) Same as (a) but for the soliton at
� = 1.407, which has a larger FM. The soliton delocalizes due to
the presence of instabilities.

We then perform linear stability analysis of the nonlinear
solutions of the finite lattice using Floquet theory [27]. In
Fig. 4(c) we plot the maximum amplitude of the Floquet
multipliers (FMs) corresponding to the nonlinear states in-
side the band gap. Recall that the values of the FMs that
are larger than unity (in absolute value) imply the existence
of instabilities. We observe that the Dirac soliton remains
linearly stable for higher frequencies, near the optical band.
However, it becomes generally unstable with the increase in
lattice energy at low frequencies. Such instabilities emerge
due to the finite size of the lattice, are associated with quartets
of FMs with modulus larger than unity, and are expected to
vanish for large lattices (see Appendix D for more details).
This is in line with the fact observed previously (when cal-
culating the conserved quantities at the continuum level) that
none of the criteria for the emergence of (in that case, real
FM-associated) instabilities of [36] were met in this context.
Similarly, we also observe that both types of edge states be-
come unstable with the increase in lattice energy. In particular,
nonlinearity-induced edge states are more unstable compared
to nonlinearity-modified edge states. However, in both cases,
once again the instabilities (that are progressively featuring
higher growth rates as the acoustic band is approached) are
associated with complex FM quartets, i.e., they are oscillatory
in nature (see also [33]).

B. Transient dynamics of discrete Dirac solitons and edge states

We now present the transient dynamics of our discrete
analogs of the continuum Dirac solitons and also of the edge
states. In Fig. 5(a) we show a discrete Dirac soliton at � =
1.421, which is linearly stable. We apply 1% noise to its
profile and provide the resulting profile as an initial condition
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FIG. 6. Transient dynamics of edge states in the finite lattice.
(a) Nonlinearity-modified edge state at � = 1.407. The transient
dynamics shows that the edge state loses its energy to the bulk
due to instabilities. (b) Nonlinearity-induced edge state profile and
its dynamics at � = 1.407. Its transient dynamics shows a stronger
delocalization in the form of a robust wave packet moving in the
bulk.

to our finite lattice for a simulation time of 2000τ0, where τ0

is the time period of the nonlinear state. We plot the energy
density ε for each mass that includes its kinetic energy and the
mean of the potential energy of its left and right neighboring
springs such that

εi =
1
2 ξ̇ 2

i + 1
2 [Epot (ξi−1, ξi ) + Epot (ξi, ξi+1)]∑N

i=1

{
1
2 ξ̇ 2

i + 1
2 [Epot (ξi−1, ξi ) + Epot (ξi, ξi+1)]

} , (34)

where Epot (ξi, ξi+1) = 1
2 (1 ± γ )(ξi − ξi+1)2 + 1

4�(ξi − ξi+1)4.
The plus and minus signs alternate for adjacent pairs of near-
est neighbors in line with Eq. (1). We observe that the discrete
Dirac soliton remains localized, confirming its linear stability.
In Fig. 5(b) we show a discrete Dirac soliton at � = 1.407,
which is linearly unstable through the FM quartets discussed
above. Contrary to the previous case, the Dirac soliton starts
shedding its energy at around 1200τ0. Interestingly, a local-
ized traveling wave packet is observed as a consequence.
Exploring the question of potentially genuine traveling such
states is an interesting question for future work, as we also
highlight below in Sec. VI.

Finally, we examine the transient dynamics of nonlinear
edge states. In Fig. 6(a) we show a nonlinearity-modified edge
state at � = 1.407, which is linearly unstable. Recall that a
topological edge state exists for this lattice in the linear limit.
Transient simulations reveal that the localized mode starts
shedding its energy to the bulk gradually while degenerating
toward the corresponding linear state. In Fig. 6(b) we show a
nonlinearity-induced edge state at the same frequency. Recall
that no such topological edge state exists for this lattice in the
linear limit. Since this nonlinear state is also linearly unsta-
ble, the transient simulations reveal that the edge state sheds
its energy. However, different from the nonlinearity-modified

edge dynamics and similar to the dynamics of the unstable
discrete Dirac soliton in Fig. 5(b), the edge state delocalization
is accompanied by a localized wave that travels in the bulk. A
similar phenomenon was also reported recently in a nonlinear
SSH model of photonics [32]. We conjecture that these belong
to lower-energy and higher-frequency soliton solutions near
the optical band, which is a feature worth exploring further.

VI. CONCLUSION

In the present work, we have examined an SSH-type linear
(dimer) system in the presence of an intersite nonlinearity of
the β-FPUT type. We have leveraged our ability to control the
linear band via a small parameter to develop a formal expan-
sion in the vicinity of the band edge of the system. This in turn
led us to a variant of the nonlinear Dirac equations. We used a
sequence of linear and subsequently nonlinear (using polar co-
ordinates) transformations to rewrite the relevant equations of
motion. We observed that the equations simplify considerably
in the limit of seeking the stationary nonlinear (continuum)
wave. Eventually, the relevant coupled ODE problem not only
is amenable to phase plane analysis, but it can also provide the
soliton solution in closed analytical form. This in turn permits
the computation of the associated conserved quantities (also
discussed herein) “at” the solitonic solution. Armed with the
knowledge of the coherent analytical structure, we then stud-
ied semi-infinite and finite-domain problems. We were able
to show that a suitable adaptation of the soliton can be made
to comply with concrete boundary conditions. This was suffi-
cient (based on the bulk-boundary correspondence) to express
the finite and semi-infinite domain edge states. We witnessed
not only nonlinearity-modified topological edge states but also
nonlinearity-induced edge states with no linear counterpart.
The latter bifurcate from the bulk soliton solutions. We also
examined the stability of the solitons and found that the deeper
one goes into the gap, the more unstable the solutions. How-
ever, these instabilities were of an oscillatory type and tended
to be weaker for large lattices, suggesting the stabilization in
the infinite lattice limit. When the instability dynamics was
explored, typically we saw that a solitonlike wave was led to
move within the lattice.

Naturally, this is only an initial step towards the more
systematic study of the lattices considered herein. One can
envision numerous additional topics for future research. For
instance, in the present work we have limited our considera-
tions to single stationary solitons. However, when instabilities
arose, they often seemed to give rise to some propagating pat-
terns spontaneously. It would be interesting to explore further
whether such genuinely traveling structures exist (even if for
isolated parameter values as in, e.g., the mass-dimer granular
variant of [48]) or not. It is interesting to point out in this
context that should such traveling wave solutions exist, the
consideration of their momentum as a function of their speed
would be worthwhile to consider in connection to their stabil-
ity, in line with classic studies along this vein, e.g., in [49].
Furthermore, while we have constrained considerations to
one-dimensional settings, generalizations to 2D lattices would
be particularly interesting. This is due, among other things, to
the fact that 2D nonlinear Dirac equations have been argued
to have not only similarities to but also intriguing differences
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from their NLS counterparts [50]. This is both in terms of the
stability of solitons and connection to the existence of vortical
patterns.
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APPENDIX A: CONTINUUM VS DISCRETE DISPERSION

Here we verify that the dispersion relation in the con-
tinuum, as described by the PDEs (3), captures fairly well
the dispersion relation characterizing the discrete system
given by Eq. (1). By substituting plane-wave solutions u(z) =
u0 exp[i(q̃cz − ω̃cτ )] and v(z) = v0 exp[i(q̃cz − ω̃cτ )] in the
linearized (�̃ = 0) Eq. (3), we get the dispersion relation for
the continuum as

ω̃c = ±
√

M̃2 + q̃2
c/8. (A1)

Since this dispersion relation holds for the scaled coordinates,
i.e., z = εn and τ = εt , an equivalent dispersion relation in
the original coordinates (n, t ) would be

ωc = ±
√

M2 + q2
c/8, (A2)

where ωc = εω̃c, qc = εq̃c, and M = εM̃. Similarly, we cal-
culate the dispersion of the discrete system in Eq. (1) as

ωd =
√

2 +
√

(1 − γ )2 + (1 + γ )2 + 2(1 − γ 2) cos qd .

(A3)

When using the ansatz in Eq. (2), we know that plane-wave
parameters are related as qd = |π + qc| and ωd = |� + ωc|.
This means that the dispersion curve for the discrete chain in
Eq. (37) has to be shifted in wave number and frequency to be
compared to the dispersion in Eq. (36). We compare the two
in Fig. 7 and find a good match for the small-band-gap case of
interest herein.
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disc
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FIG. 7. Comparison of continuum (solid line) and discrete dis-
persion (dashed line) for (a) ε = 0 and (b) ε = 0.01 with γ̃ = 2.
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FIG. 8. Comparison of NLD power and lattice energy for Dirac
solitons and edge states in continuum. Three different lattice sizes
are taken: (a) N = 250, (b) N = 500, and (c) N = 1000.

APPENDIX B: ENERGY OF THE LATTICE
VS THE POWER OF NLD EQUATIONS

For nonlinear periodic solutions (standing wave) at fre-
quency � = �m + εω̃, let |ξ | denote the amplitude of
oscillations. We can then write the total energy of the lattice
as the maximum potential energy

Elattice(ω̃) =
∑

unit cells n

[
1

4
(1 + γ )(|ξ |2,n−1 − |ξ |1,n)2

+ 1

8
�(|ξ |2,n−1 − |ξ |1,n)4

+ 1

2
(1 − γ )(|ξ |1,n − |ξ |2,n)2

+ 1

4
�(|ξ |1,n − |ξ |2,n)4

+ 1

4
(1 + γ )(|ξ |2,n − |ξ |1,n+1)2

+ 1

8
�(|ξ |2,n − |ξ |1,n+1)4

]
. (B1)

We then follow the same procedure described in Sec. III and
employ a continuum approximation to reduce the equation in
terms of the amplitude of ψ1 and ψ2 such that

Elattice(ω̃) =
∫ ∞

−∞

(
1

4G2
√

2
(|ψ1|2 + |ψ2|2) + · · ·

)
ds,

(B2)

where G =
√

−3�/4
√

2 and the dots denote higher-order
terms. This equation is tantamount to the power of the NLD
equation (28) for small |ψ1| and |ψ2|. In Fig. 8 we show the
comparison of lattice energy and power for Dirac solitons
and edge states that were found analytically for a continuum,
illustrating the very good agreement between the two.

APPENDIX C: BOUNDARY WITH θ(0) = 0 [U (0) = V (0)]

For θ (0) = 0, Eq. (20) yields s0 = 0. Interestingly, this
results in exactly the same profile as that of Dirac soliton;
however, we take the right half for the semi-infinite domain
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FIG. 9. Stability of discrete Dirac soliton. (a) FM amplitude as a function of frequency inside the band gap for Dirac solitons. (b) Same
as (a) but for the FM phase. Colors denote the Krein signature of Floquet eigenmode. (c) FM amplitude decreases as the lattice length is
increased, indicating the existence of finite-size instabilities. (d) Zoomed-in view of (a), indicating the emergence of a peculiar instability at
the midgap frequency �m = √

2. (e) This instability drastically diminishes with the increase in lattice length. (f) Spatial-temporal dynamics
of the Dirac soliton at � = 1.407 in a large lattice of N = 1500. (g) Same as (f) but for an even larger lattice of N = 15 000. The colormap
shows the energy density.

s ∈ [0,∞). Since the Dirac soliton exists for the entire band
gap, this edge state also exists for the entire band gap, i.e.,
ω̃ ∈ [−M̃, M̃]. For the finite chain, this case corresponds to a
free end instead of a fixed one.

APPENDIX D: TYPES OF INSTABILITIES

Here we examine the instabilities of discrete Dirac soli-
tons in more detail. In Figs. 9(a) and 9(b) we show the
amplitude and phase of FM for solitons inside the band
gap. We observe that solitons become unstable, i.e., |λi| > 1,
for most of the frequencies below � = 1.42. Krein signa-
ture analysis [33] reveals that such instabilities are due to
the collision of bulk spectrum in Fig. 9(b). Therefore, these
are bulk-bulk or finite-size instabilities [33]. In Fig. 9(c) we
show that such instabilities reduce with the increase of lattice

size. This makes sense due to the existence of finite-size
instabilities. In Fig. 9(d) we highlight the instability that
emerges at the midgap frequency � = √

2. This instability
is a result of coupling between the discrete Dirac soliton
and the nonlinearity-induced edge state. As the length of the
lattice is increased, this coupling is reduced and thus the
instability drastically diminishes as shown in Fig. 9(e). We
further confirm this by performing transient simulations on
large lattices. We give the analytically obtained Dirac soliton
solution at � = 1.407 as an initial condition to large lattices of
size N = 1500 and 15 000 in Figs. 9(f) and 9(g), respectively.
We observe stable propagation of the breathing soliton in the
larger lattice over the course of the monitored time horizon,
indicating the reduction of finite-size instabilities in such
lattices.
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