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Bulk-edge correspondence in the trimer Su-Schrieffer-Heeger model
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A remarkable feature of the trimer Su-Schrieffer-Heeger (SSH3) model is that it supports localized edge
states. However, in contrast to the dimer version of the model, a change in the total number of edge states in
SSH3 without mirror-symmetry is not necessarily associated with a phase transition, i.e., a closing of the band
gap. As such, the topological invariant predicted by the 10-fold way classification does not always coincide with
the total number of edge states present. Moreover, although Zak’s phase remains quantized for the case of a
mirror-symmetric chain, it is known that it fails to take integer values in the absence of this symmetry and thus
it cannot play the role of a well-defined bulk invariant in the general case. Attempts to establish a bulk-edge
correspondence have been made via Green’s functions or through extensions to a synthetic dimension. Here we
propose a simple alternative for SSH3, utilizing the previously introduced sublattice Zak’s phase, which also
remains valid in the absence of mirror symmetry and for noncommensurate chains. The defined bulk quantity
takes integer values, is gauge invariant, and can be interpreted as the difference of the number of edge states
between a reference and a target Hamiltonian. Our derivation further predicts the exact corrections for finite
open chains, is straightforwardly generalizable, and invokes a chiral-like symmetry present in this model.

DOI: 10.1103/PhysRevB.106.085109

I. INTRODUCTION

SSH3 [1–3] is an extended version of the Su-Schrieffer-
Heeger (SSH) model [4,5]. The latter has been an archetyp-
ical model for topological insulators, since it vividly
displays many key aspects of these systems, while exhibiting
a simple mathematical description. Specifically, it is a tight-
binding model with two different sublattices within the unit
cell and its hallmark is that it exhibits edge states, which
are robust against disorder. Moreover, a bulk-edge correspon-
dence can be established for SSH [6]. Informally, this means
that a topological invariant can be defined in the bulk of the
system (i.e., its infinite, periodic adaption), which depends on
the parameters of the Hamiltonian and takes integer values.
The values of the bulk invariant correspond to the number of
edge states that the finite system with open boundary condi-
tions exhibits, while also marking its different phases.

While the SSH3 at first glance is the simplest extension
of SSH, many difficulties arise concerning the investigation
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of the emergence of edge states and the possibility of estab-
lishing a bulk-edge correspondence. The main reason is that
the 1D topological invariants, which are defined in the case of
SSH (e.g., Zak’s phase [7,8] and winding number [9]) require
specific symmetries [10] (such as chiral and inversion) in
order to be quantized and to be useful in establishing an easily
interpretable bulk-edge correspondence. However, these sym-
metries are not present in the more general case of SSH3, e.g,
in the generic case when all three couplings within the unit cell
are different. Moreover, in the absence of symmetries, regimes
with a different total number of edge states can be adiabat-
ically connected without necessarily being accompanied by
a phase transition, in the sense of the band-gap closing. Due
to that, the topological invariant predicted by the tenfold way
classification of topological insulators and superconductors
[11,12] cannot always correspond to the total number of edge
states present in the system. However, at the same time, SSH3
is known to exhibit robust, localized edge states [1], even in
the absence of symmetries, which motivates the need for an
establishment of a bulk-edge correspondence. However, the
difficulty in defining a bulk invariant that takes integer values
for 1D systems without specific symmetries has led many to
conclude that nonzero edge states are not always topologi-
cal [13–15]. In order to overcome the difficulties concerning
defining a 1D topological invariant, a Chern number has been
introduced [16–18] through the extension to a synthetic di-
mension [1,19]. Other attempts for establishing a bulk-edge
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FIG. 1. (a) The unit cell of an SSH3 tight-binding model with couplings u, v (intracell), and w (intercell). A, B, and C denote the three
sublattices while the length of the unit cell is d , which we set to d = 1. (b) The spectrum of the bulk Hamiltonian of SSH3 in the first Brillouin
zone. Here, all hoppings are different (no degeneracies present). The spectrum is symmetric with respect to the point (k = π/2, E = 0), as
indicated.

correspondence implement Green’s function [20,21] for 1D
systems.

The aim of this paper is to define a 1D bulk quantity in the
infinite chain that will establish a bulk-edge correspondence.
The key insight of this paper is that the phases of the sublattice
components of the eigenvectors of the bulk Hamiltonian con-
tain all the necessary information for establishing a bulk-edge
correspondence. Our paper combines elements of the works
done in [22–25]. The novelty in what we present here is that
we establish bulk-edge correspondence for the case of a finite
open system with either integer or noninteger number of unit
cells and we calculate finite-size corrections. Furthermore, the
technique we use is easily generalized to larger unit cells (the
case of SSHm). Another important aspect is that our derivation
does not require any knowledge of the modern theory of
polarization [26–29], which is needed in works that have used
the same invariant for semi-infinite chains [24,25].

Lastly, we report that this system possesses a chiral-like
symmetry that we call point chirality. This symmetry can be
seen as a member of the family of particle-hole symmetries
in the context of many-body physics, formulated in Ref. [30].
These symmetries reduce to chiral symmetries when treating
one-body Hamiltonians. Furthermore, it has been reported
that point-like chiral symmetries can be linked to topological
properties of a system [31,32]. This symmetry also exists in
SSHm with m odd and has important consequences for the
behavior of the system and the profile of the edge states,
similar to the ones of ordinary chirality.

The rest of the paper is organized as follows: In Sec. II
we give an overview of the SSH3 model. We also present
point chirality and its consequences on the spectrum and the
profile of the eigenstates (including egde states). In Sec. III
we show how the phases of the bulk eigenvectors come into
play when one tries to solve the finite problem and how these
phases can be obtained via normalized sublattice Zak’s phase.
Furthermore, we derive the proposed bulk-edge correspon-
dence by showing that the values of normalized sublattice
Zak’s phase correspond to the number of edge states in each
phase and we draw the phase diagram for a finite Hamiltonian
with 3N sites. In Sec. IV we use normalized sublattice Zak’s
phase to establish bulk-edge correspondence for the case of
chains with 3N + 1 and 3N + 2 sites. Lastly, in Sec. V we
apply our method to SSH and SSH4 models, hinting towards
a straightforward generalization to any SSHm model.

II. THE SSH3 MODEL

A. Preliminaries

SSH3 is an extended SSH model with a unit cell that con-
sists of three sites. The hopping between the sites is controlled
by the couplings u and v, while the different unit cells are
coupled with the intercell coupling w [Fig. 1(a)]. The system
is governed by the Hamiltonian

H = −
N∑

n=1

(u |n, A〉 〈n, B| + v |n, B〉 〈n,C|)

−
N−1∑
n=1

w |n,C〉 〈n + 1, A| + H.c. (1a)

corresponding to an open chain, while

H = −
N∑

n=1

(u |n, A〉 〈n, B| + v |n, B〉 〈n,C|)

−w |n,C〉 〈n mod(N ) + 1, A| + H.c. (1b)

for a periodic chain. Here |n, a〉 is the lattice basis, where
n = 1, 2, . . . , N denotes the unit cell and a = A, B,C de-
notes the sublattice. Without loss of generality, we will
henceforth assume that the hopping parameters are real and
nonnegative [33].

The eigenstates of the periodic chain, due to translation
invariance, can be constructed in terms of Bloch solutions.
These solutions are of the form

|ψλ(k)〉 = |k〉 ⊗ |uλ(k)〉 , (2)

where |k〉 = ∑N
m=1 eikm |m〉 is defined over unit cells indexed

by m and k takes values k = 2πn/N with n = 1, 2, . . . , N .
The cell-periodic part |uλ(k)〉, where λ denotes the energy
band, is an eigenvector of the reduced bulk Hamiltonian

Hbulk (k) = −
⎛
⎝ 0 u we−ik

u 0 v

weik v 0

⎞
⎠. (3)

The spectrum of the bulk Hamiltonian is not symmetric
around zero, implying that the system does not possess chiral
symmetry [34] [Fig. 1(b)]. Nevertheless, the bulk Hamiltonian
of SSH3 possesses generalized chirality [35] (see Appendix A
for a brief exposition), which relies on the fact that the system
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FIG. 2. Continuation of energy spectrum with respect to the
intercell hopping coupling w for a chain of 30 sites (n = 10 unit
cells). (a) A mirror-symmetric chain (u = v = 6). Notice that the
emergence of the edge states does not occur exactly at w = 6, which
would be the case in the thermodynamics limit; this is due to the finite
size of the system. The exact way to calculate the finite-size correc-
tions is presented later in Sec. III C. (b) A chain with all couplings
different (u = 3 and v = 6)—no mirror symmetry is present.

has uniform on-site potentials (i.e., the diagonal part of the
Hamiltonian vanishes). Apart from that, the bulk Hamiltonian
has an additional symmetry, which we call point chirality.
This symmetry is a result of the equivalence of the bulk
Hamiltonian of SSH3 with the bulk Hamiltonian of a degen-
erate SSH6 superlattice, which consists of two consecutive
SSH3 unit cells [36]. SSH6 exhibits chiral symmetry and
as a result it has a symmetric spectrum with respect to zero
energy. We will show in the next section that the existence of
point chirality for SSH3 gives rise to similar properties of the
two systems either for the finite or for the infinite (bulk) case
(i.e., for each positive eigenvalue there exists a corresponding
negative eigenvalue with the same absolute value).

Furthermore, SSH3 exhibits edge states for certain values
of the couplings. Edge states can appear in the case of a
mirror-symmetric SSH3 (i.e., when two out of three cou-
plings are equal) and they emerge at the point where the
gap closes [Fig. 2(a)]. In general, the Hamiltonian exhibits
a band-gap closing only when u = v = w (fully degenerate
case). However, edge states can also be present in the case of
an SSH3 that does not possess mirror symmetry (all couplings
different) and their emergence is not related to a gap closing
[Fig. 2(b)]. In the mirror-symmetric case it is obvious that the

appearance of edge states is accompanied by the gap closing
since the point where u = v = w is unavoidable, while in a
chain without mirror symmetry this point can be avoided.
However, in the latter case, edge states appear after the passing
of mirror-symmetric points, i.e., when w = u and w = v. The
aim of this paper is to establish a bulk-edge correspondence
that will predict the emergence of all these edge states and to
explore the impact of symmetries on their profile.

B. Point chiral symmetry and edge states

As is evident in Fig. 1(b), the spectrum of the Hamiltonian
exhibits an interesting symmetry: For every energy E (k) there
exists a corresponding point at π − k with opposite energy,
possibly belonging to a different band. This observation can
be formalized by noticing that [37]

�pHbulk (k)�†
p = −Hbulk (π + k) (4)

where

�p = diag(1,−1, 1) (5)

is unitary and Hermitian. The similarity with the (ordinary)
chiral symmetry is obvious, except from the fact that here
the symmetry relates energy eigenstates corresponding to
different k. This symmetry, also reported in [31,32], com-
bined with time-reversal symmetry, can give a shifted particle
hole symmetry [38]. A consequence of symmetry (4) are the
relations

E2(π − k) = −E0(k), (6a)

E1(π − k) = −E1(k), (6b)

where the bands λ = 0, 1, 2 are enumerated from bottom to
top. That is, the spectrum is symmetric with respect to the
point (k = π/2, E = 0) within the reduced Brillouin zone
(RBZ) k ∈ [0, π ] [analogously for k ∈ [−π, 0)], and for this
reason we will refer to symmetry (4) as point chirality.
Relations (6) follow by noticing that Eq. (4) is also valid for
H∗

bulk (k), which, combined with time reversal, gives

�pHbulk (k)�†
p = �pH∗

bulk (−k)�†
p = −H∗

bulk (π − k),

and thus Hbulk (k) and −Hbulk (π − k) have the same spectrum.
For the SSHm models with m odd, although a chiral op-

erator for the bulk Hamiltonian cannot be established, one
can define a chiral operator for the corresponding finite open
chain as �̃ = diag(1,−1, 1,−1, 1, . . . ). In light of this obser-
vation, point chirality can be understood as a manifestation
of chiral symmetry of the finite chain on the level of the
bulk Hamiltonian. This becomes evident by noticing that the
extension of the point chirality operator acting on the finite
chain is

�̃p =
∑

m

(−1)m |m〉 〈m| ⊗
⎛
⎝1 0 0

0 −1 0
0 0 1

⎞
⎠

= diag(1,−1, 1,−1, 1, . . . ) = �̃ (7)

where the alternating sign factor (−1)m comes from the shift
k → k + π , as prescribed by Eq. (4).

Since the symmetry (4) is closely related to chiral
symmetry (in the above sense), the former also implies well-
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FIG. 3. The spatial profile of the four edge states exhibited by an
SSH3 lattice. One can observe that pairs of edge states localized on
the same edge (corresponding to opposite energies) are related by a
sign change of the amplitude over half of the sites. Moreover, all four
edge states do not have support over one out of the three sublattices.

established consequences [5] for the profile of the eigenstates
of the Hamiltonians (1). Specifically, eigenstates with nonva-
nishing energy satisfy the following [39]:

(i) They always come in pairs with opposite energies;
(ii) The partner eigenstates can be obtained from one an-

other by the action of �̃; and
(iii) They have equal support over even and odd sites.
For additional details and derivation of the above proper-

ties, see Appendix A 2.
Edge states, if they exist, can be understood as correspond-

ing to a complex wavenumber [6,22]. Thus properties (i)–(iii)
also apply to them, yielding the same features. Edge-state
pairs with opposite energies are localized on the same side of
the chain. This follows since, by the action of a point chiral
symmetry, the imaginary part of the wavenumber does not
change sign. In Fig. 3 we plot the spatial profile of the four
edge states (two in each gap) that occur for w > u, v in this
SSH3 chain when no mirror symmetry is present. One can
observe properties (ii) and (iii) in this figure.

As mentioned previously, we aim to a bulk-edge corre-
spondence for the SSH3 model. In practice we search for
a quantized bulk quantity, which takes integer values cor-
responding to the number of edge states that appear in the
associated open finite chain.

III. BULK-EDGE CORRESPONDENCE FOR SSH3:
INTEGER NUMBER OF CELLS

For the case of the (dimer) SSH model, the presence of
inversion and chiral symmetry guarantee that Zak’s phase,
defined as

Z := i
∮

dk 〈uλ(k)|∂kuλ(k)〉 (8)

where the integration is carried out on the first Brillouin zone,
can be a well-defined bulk quantity, which takes integer val-
ues. This quantity can be used to predict the existence of edge
states in each phase [5,6,9]. The presence of these symmetries
is a necessary prerequisite for the quantization of Zak’s phase
[20,23]. For the case of SSH3 with u = v (mirror-symmetric

case) and an integer number of unit cells Zak’s phase gives
a correct bulk-edge correspondence [1]. In the absence of
this constraint, however, Zak’s phase does not take integer
values and thus cannot be directly used in order to establish
a bulk-edge correspondence.

Despite the absence of the aforementioned symmetries, in
the following sections we will establish a bulk-edge corre-
spondence for SSH3 for the general case. The key ingredient
will turn out to be a generalization of Zak’s phase for the
different sublattices, and will emerge as the natural general-
ization of the usual bulk invariant of the dimer SSH.

A. Phases of bulk eigenvectors and normalized
sublattice Zak’s phase

We begin with the case of a finite open chain, with an
integer number of cells N . We seek to express the eigenstates
of this Hamiltonian in terms of the solutions of the periodic
problem, which take the form

|ψλ(k)〉 = �

M∑
j=1

eik j | j〉 ⊗

⎛
⎜⎜⎝

aA
λ (k)e−iθA

λ (k)

aB
λ (k)e−iθB

λ (k)

aC
λ (k)

⎞
⎟⎟⎠, (9)

where � is a normalization constant to be determined after
the imposition of the boundary conditions, M is the number
of cells of the periodic chain, and λ enumerates the band.
We assume M � N so that k can be handled as a continuous
variable in k ∈ [−π, π ). Similarly to [6,22], one considers
the open chain as embedded within this longer periodic one,
and imposes appropriate boundary conditions [see Fig. 1(a)],
which read

〈0,C|ψλ(k)〉 = 0, (10a)

〈N + 1, A|ψλ(k)〉 = 0. (10b)

The imposition of the boundary condition (10a) can be satis-
fied by a superposition of Bloch states in the form, |ψ̃λ(k)〉 =

1√
2
( |ψλ(k)〉 − |ψλ(−k)〉 ), which can be compactly written as

|ψ̃λ(k)〉 = �̃

N∑
j=1

| j〉 ⊗

⎛
⎜⎝

aA
λ (k) sin (k j − θA

λ (k))

aB
λ (k) sin (k j − θB

λ (k))

aC
λ (k) sin(k j)

⎞
⎟⎠. (11)

Here we kept only the part of the finite chain we are interested
in and therefore the normalization constant �̃ is appropriately
adapted. To get the above form, we have also used the time-
reversal symmetry, i.e, θ s

λ(k) = −θ s
λ(−k) and as

λ(k) = as
λ(−k)

where s = A, B,C and as a convenient gauge choice we fix the
C-sublattice component to be real (θC

λ (k) = 0).
Now, by imposing the second boundary condition (10b),

one gets

θA
λ (k) = (N + 1)k − nλπ, nλ ∈ Z (12)

where nλ counts the allowed real k solutions. The finite
problem will have exactly 3N eigenvectors, i.e., N for each
band. If condition (12) yields less than N distinct eigenstates
for each band, the missing solutions can be expressed in
terms of complex wavenumbers and turn out to be the edge
states [1,6].
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In turn, since the number of allowed solutions is dictated
by (12), it is natural to assume that for the case of SSH3
with an integer number of unit cells, the condition that de-
termines the number of Bloch solutions—and thus, also the
number of localized solutions—for each band is encoded in
a bulk quantity, namely the phase θA

λ of the first sublattice.
The above reasoning dictates that this information can be
extracted through the winding of a sublattice. This winding
was defined in [24] and we will call it normalized sublattice
Zak’s phase (NS Zak’s phase) because it can be also viewed as
a quantity similar to the one defined in [23], but with an extra
normalization [40],

Zλ
A,C := i

2

∮
dk 〈ũλ(k)|∂kũλ(k)〉 =

∫ π

0
dk

∂θA
λ (k)

dk
. (13)

Above we defined |ũλ(k)〉 := PA|uλ(k)〉√〈uλ(k)|PA|uλ(k)〉 = e−iθA
λ (k) |A〉

and PA := |A〉〈A| is the sublattice projector. The first subscript
denotes the projected sublattice, the second subscript denotes
the gauge condition θC

λ = 0, while λ denotes the correspond-
ing band. We also used the fact that θA

λ (k) is an odd function
of k due to time-reversal symmetry in order to integrate in the
RBZ.

B. Normalized sublattice Zak’s phase: Z or Z2 invariant?

Zak’s phase, as defined in Eq. (8), is interpreted by many
authors as a Z2 invariant [9,13,15] especially in the context
of superlattices and many bands. This means that Zak’s phase
can take only two integer values that correspond to two phases
(trivial or topological). In this framework, Zak’s phase is
defined mod(2π ), the quantization is achieved via chiral or
inversion symmetry [7] and it is used to characterize band
gaps as trivial or topological (if they contain edge states or
not) in the following manner: In a multiband system, one
calculates the sum of Zak’s phases corresponding to all the
bands below the gap to be probed. The number of edge states
in the desired gap is the outcome of the summation mod(2π ).
On the contrary, here we aim to probe bands instead of gaps.
This means that instead of the question “how many edge states
are in a given gap?”, we are going to answer the question “how
many states are missing from a given band?”. It is then clear
that the bulk quantity should be defined as a Z invariant [as
is the case with Eq. (13)], i.e., an invariant that can take all
integer values, and not as a Z2 invariant, because some bands
can contribute two edge states (see Fig. 2).

In order to achieve gauge invariance, we will employ
differences of NS Zak’s phases. Apart from being mathemat-
ically helpful [41], this way of defining the invariant also
corresponds to an experimentally measurable quantity [42].
Specifically, we will assign physical meaning only to a dif-
ference of NS Zak’s phases with respect to an (arbitrary, but
conveniently chosen) reference Hamiltonian. The NS Zak’s
phase for this Hamiltonian will be denoted as Zλ,ref

A,C and it will
be defined in a specific gauge. As we will momentarily show,
the gauge-invariant quantity (Zλ

A,C − Zλ,ref
A,C )/π will be equal

to difference in the number of edge states (in band λ) between
the target Hamiltonian and the reference one.

C. Bulk-edge correspondence for a chain with an integer
number of unit cells

We are now ready to state the main result of this section: An
(open) SSH3 chain with 3N sites, in the thermodynamic limit
N → ∞, has exactly (Zλ

A,C − Zλ,ref
A,C )/π edge states, which have

emerged from band λ. Zλ,ref
A,C denotes the NS Zak’s phase of the

“reference” coupling regime that has no edge states, which
here can be any chain with w < u, v.

Although we will henceforth work for convenience with
the specific gauge prescribed earlier, the above statement is
independent of this choice. In fact, our derivation will yield a
stronger result, allowing us to predict analytically the phase
diagram as a function of the hopping parameters for any
finite size.

1. Derivation of the bulk-edge correspondence for a chain with an
integer number of unit cells

As discussed previously, the number of the delocalized
eigenstates of the Hamiltonian (1a) is dictated by the quanti-
zation condition (12). We now turn to investigate analytically
the dependence of the number of distinct solutions of this
equation as a function of the hopping parameters of the
Hamiltonian.

We will follow the approach of Ref. [43], that is,
parametrize the eigenvalues of the finite problem in terms
of the eigenvalues of the bulk Hamiltonian. This can be
achieved via recursive relations for the characteristic polyno-
mials involving subdeterminants of the finite Hamiltonian. By
implementing this technique, one arrives at a complete set of
conditions that, when satisfied, yield the nonedge-state solu-
tions of the finite problem. A derivation for SSHm (m ∈ N)
can be found in [22]. The specific condition for the case of
SSH3 is derived for convenience in Appendix B and reads

cot (φλ(k)) = cot[(N + 1)k] = 1

a1
λ(k) sin(k)

+ cot(k), (14a)

a1
λ(k) := − w

uv
Eλ(k), (14b)

where the angular variable φλ(k) is known as the momentum
shift [22] and Eλ(k) is the energy eigenvalue of the band λ. For
the case of an integer number of cells and gauge θC

λ (k) = 0,
one can in addition take

φλ(k) = θA
λ (k). (14c)

We are now able to deduce (i) the value of the NS Zak’s
phase and (ii) the number of edge states over the hopping
parameter space.

2. Normalized sublattice Zak’s phase

By combining Eqs. (13) and (14) it immediately follows
that NS Zak’s phase is quantized, i.e., Zλ

A,C = nλπ with nλ ∈ Z.
This is because

cot[θA
λ (k)] = 1 − w

uv
Eλ(k) cos(k)

− w
uv

Eλ(k) sin(k)
(15)

and, since the eigenenergies Eλ(k) are continuous and
bounded functions of k, Eq. (15) diverges when k → 0+, π−.

085109-5



ADAMANTIOS ANASTASIADIS et al. PHYSICAL REVIEW B 106, 085109 (2022)

TABLE I. Table of the different values of Zλ
A,C − Zλ,ref

A,C for the
case of integer number of unit cells in different coupling regimes.
Here the reference chain is any chain with a, b > 1.

Zλ
A,C − Zλ,ref

A,C Zλ
A,C − Zλ,ref

A,C Zλ
A,C − Zλ,ref

A,C

Band λ a, b > 1 a < 1, b > 1 a, b < 1
a > 1, b < 1

0 0 π π

1 0 0 2π

2 0 π π

Our next task is to deduce the values Zλ
A,C as a function

of the Hamiltonian parameters. For that, we will first deter-
mine the hypersurfaces in the parameter space that separate
regions with different values of Zλ

A,C . In Appendix C we show
that all such separating hypersurfaces are determined by the
equation gλ(k) = 0, where gλ(k) := 1 − w

uv
Eλ(k) cos(k) is the

numerator in Eq. (15).
The values of the hopping parameters satisfying the equa-

tion gλ(k) = 0 can be obtained analytically via invoking the
fact that the eigenvalues of the bulk Hamiltonian satisfy the
characteristic polynomial. The latter reads

E3
λ (k) − (u2 + v2 + w2)Eλ(k) + 2uvw cos(k) = 0. (16)

With this equation at hand, the condition gλ(k) = 0 then
immediately reduces to

a(a + 1)(a − 1)b(b + 1)(b − 1) = 0, (17a)

where

a := u

w
, and b := v

w
, (17b)

independently of the band λ.
We have therefore shown that all possible changes of the

quantized Zλ
A,C can occur on the lines a = 0,±1 and b =

0,±1 of the a − b real plane, i.e., when w = ±u and w = ±v.
The parameter space is divided by the above surfaces into re-
gions over which NS Zak’s phase, for all of the bands, cannot
change value. It is hence now straightforward to deduce the
actual value of Zλ

A,C for each band, and for each of the few
resulting regions of the parameter space. This can now be
done easily (see Appendix C), and the resulting values for NS
Zak’s phase are summarized in Table I.

3. Counting edge states

The last piece remaining is to show how one can systemat-
ically count the number of edge states as a function of the
hopping parameters, also taking into account finite-size ef-
fects. For that, we will follow an approach similar to Ref. [6].

Effectively, this task reduces to counting the number of
distinct eigenstates yielded by θλ(k) when Eq. (12) is taken
into account. Graphically, one can equivalently investigate
the number of intersections of φλ(k) with the lines {Fn(k)}n,
where Fn(k) := (N + 1)k − nπ , n ∈ Z in the open interval
k ∈ (0, π ). The reason that one should take the RBZ is that
due to time-reversal symmetry, only half of the Brillouin
zone produces distinct eigenstates. Furthermore, one has to
exclude the endpoints of the interval because the eigenstates

are identically zero at 0 and π again due to time-reversal
symmetry. Therefore, in the trivial regime—where the system
does not exhibit edge states—the number of intersections
between φλ(k) and the lines {Fn(k)}n in the RBZ should be
exactly N , i.e., equal to the number of unit cells of the finite
system we are investigating. On the other hand, if the system
exhibits edge states, this means that there are less than N
intersections within the RBZ.

This is demonstrated in Fig. 4 for the middle band (λ = 1).
Due to the continuity of θA

λ (k), each band cannot contribute
with more than two edge states, i.e., missing solutions always
correspond to endpoint lines. Moreover, the number of edge
states (for an arbitrary finite size N) does not only depend on
the values at the endpoints, but also on the shape of the curve
near the endpoints. In fact, the relevant feature is the slope
(see Fig. 4), and the corresponding condition is analogous to
the one stated by Delplace et al. [6]. Specifically, the slope
condition takes the form

0 � ∂kθ
A
λ (k)|k=π � ∂kFn(k)|k=π , (18a)

which reduces to

1 � 1

a1
λ(π )

� 1 − 1

N + 1
(18b)

where λ = 1, 2 denotes the middle or the top band, respec-
tively. The above condition is satisfied if and only if (a) there
is a double edge-state contribution from the middle band (case
λ = 1) and (b) there is a single edge-state contribution from
the top band and a single one from the bottom bands (case
λ = 2).

It is important to note that due to point chiral symmetry,
the behavior of the bottom band can be deduced from the
top band, hence there is no need to examine the case λ = 0
separately.

Point chiral symmetry imposes the following constraints
on the momentum shift: (a) The momentum shift of the middle
band is symmetric around (k, E ) = (π/2, 0). Thus, the fact
that the middle band necessarily contributes with pairs of
edge states can be understood as a consequence of the above
unitary symmetry. (b) The momentum shift of the bottom
band is symmetric to the one of the topmost band with re-
spect to (k, E ) = (π/2, 0). As a result, when the condition for
the existence of an edge state is satisfied for either the top
or the bottom band, a corresponding relation will be satisfied
for the other one as well.

It is easy to see that in the thermodynamic limit N → ∞,
∂kFn(k)|k=π → ∞. This means that condition (18b) will be
always satisfied as long as momentum shift is a smooth func-
tion with a positive finite value at k = π . In that case, only
the values of the momentum shift at the edges of the RBZ are
relevant and the derivative conditions can be dropped. As a
result, the values of Zλ

A,C are sufficient to determine alone the
number of edge states in the thermodynamic limit.

Now, coming back to (18b), one can investigate the limiting
case where

1

a1
λ(π )

= 1 − 1

N + 1
. (19)

This defines size-dependent curves in the (a, b)-parameter
space separating regions where a different number of edge
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FIG. 4. Plot of the momentum shift φλ(k) (red-dashed line) from its analytical expression (see Appendix C) for the middle band in two
different coupling regimes for a finite chain with N = 10 unit cells. (a) In the trivial regime, one can observe that this bulk quantity intersects
with the {Fn(k)} lines (blue) 10 times in the reduced Brillouin zone k ∈ (0, π ). (b) When in the edge-states regime, momentum shift intersects
eight times with the possible solutions of the finite problem. Two states have left the band. (c) Finite-size effect, where NS Zak’s phase is
nonzero but the same number of intersections occurs as in the trivial regime. This kind of finite-size effect vanishes in the thermodynamic limit
(N → ∞).

states are exhibited, see Fig. 5. In the thermodynamic limit,
one recovers the phase diagram predicted by the NS Zak’s
phase, since the above equation reduces to gλ(π ) = 0, con-
cluding the derivation of the bulk-edge correspondence for an
integer number of unit cells.

In Fig. 6 the parameter regimes with different number of
edge states as predicted by the introduced bulk quantity are
presented. Only the number of edge states below zero energy
(first band gap) are shown. The number of edge states above
zero energy will be the same due to point chiral symmetry. As
one can observe, the closing of the gap happens only at the
single point (a = 1, b = 1). Thus, it is not necessary for the
path of an adiabatic change of the Hamiltonian to pass through
(1,1) when the number of edge states changes. The agreement
of the size-dependent curves of Fig. 5 at the thermodynamic
limit with the borderlines in Fig. 6 verifies the bulk-edge
correspondence introduced in the present paper.

IV. BULK-EDGE CORRESPONDENCE FOR
3N + 1 AND 3N + 2 SITES

The key observation that allowed us to establish a bulk-
edge correspondence in the case of 3N sites was that the
phase of the first component of the Bloch eigenvectors (in the
appropriate gauge) codified all the necessary information for
the existence of the edge states. However, when extra sites
are added the expression for the momentum shift is modified

FIG. 5. Plot of the limiting lines from relation (19) where the
transition happens for the finite system, in the parametric space of a
and b, for the bottom and middle band. Chains have N = 2, 10, 1000
(dashed line, dotted line, and solid line, respectively) unit cells.
Notice how, at the thermodynamic limit, the curves approach the
lines predicted by (17a). Comparing the current figure with Fig. 6
it becomes evident that the number of edge states matches with the
values predicted analytically by NS Zak’s phase.
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FIG. 6. Parameter regimes with a different number of edge states
for an SSH3 chain with 3N sites, as predicted by the introduced bulk
quantity. Dashed lines represent the mirror-symmetric paths while
the path with the dotted lines is not constrained by mirror symmetry.

[22], as dictated by the corresponding boundary conditions.
It is then natural to pursue a formulation of a bulk-boundary
correspondence that is given in analogous terms, i.e., as a
NS Zak’s phase but over a different sublattice (see Fig. 7).
One would also expect that a gauge-invariant quantity can be
constructed by taking the difference of the NS Zak’s phases
between the chain of interest and a reference chain, as in
the case of 3N sites. Specifically we will show that all the
differences (Zλ

i,C − Zλ,ref
i,C )/π with i = A, B,C can be utilized

to establish bulk-edge correspondence for different case of
noncommensurate chains.

In the following we show that, indeed, a similar procedure
leads to a correct bulk-edge correspondence for the case
of 3N + 1 sites. With the appropriate modifications, the
derivation is exactly analogous to the case of 3N sites. On
the other hand, the case of 3N + 2 sites needs individual
treatment, a fact that has also been observed in more general
context [22,44].

A. Bulk-edge correspondence for a chain with 3N + 1 sites

When adding an extra site to the right of a chain with
an integer number of cells, the boundary conditions (10) are

FIG. 7. The boundary conditions of an open chain for the cases
of 3N and 3N + 1 sites. Since they are not the same, a different NS
Zak’s phase should be utilized in each case.

modified as (see Fig. 7)

〈0,C|ψλ(k)〉 = 0, (20a)

〈N + 1, B|ψλ(k)〉 = 0. (20b)

By following exactly the same logic as in the integer case, we
arrive at the quantization condition,

θB
λ (k) = (N + 1)k − nπ, n ∈ Z. (21)

This implies that the proper bulk quantity in this case is Zλ
B,C

and not Zλ
A,C , as this NS Zak’s phase extracts the relevant angle

in the case of 3N + 1 sites. If one chooses the gauge

θC
λ (k) = 0, (22)

then the additional relation

θB
λ (k) = φλ(k) (23)

holds, where φλ(k) is the momentum shift. The latter, in the
case of an extra site, takes slightly different form,

cot(φλ(k)) = cot[(N + 1)k] = 1

a2
λ(k) sin(k)

+ cot(k) (24a)

a2
λ(k) := −uw

v

1

Eλ(k)
. (24b)

For a thorough investigation of the momentum shift for non-
integer unit cells, see Ref. [22].

Similarly to the approach in Sec. III C, one arrives at
the hypersurfaces on which NS Zak’s phase changes value:
a′ = ±1, b′ = ±1 in the a′ − b′ space, where now a′ := u

v

and b′ := w
v

.
For the case of a finite chain with 3N + 1 sites, one

can use the same technique for counting states within the
Brillouin zone as in the case of the integer number of unit
cells. The analytical formula for the momentum shift is given
in Appendix C, from which one can calculate NS Zak’s phase
for the different parameter regimes.

Lastly, in order to get finite-size corrections one should
again use the derivative condition given in (18a) expressed for
θB
λ . This reduces to

1 � 1

a2
λ(π )

� 1 − 1

N + 1
, (25)

which is the exact analog of (18b). In the light of these, we
arrive at the bulk-edge correspondence for an SSH3 chain with
3N + 1 sites:

An (open) SSH3 chain with 3N + 1 sites, in the thermody-
namic limit N → ∞, has exactly (Zλ

B,C − Zλ,ref
B,C )/π edge states

corresponding to the band λ. Zλ,ref
B,C denotes the NS Zak’s phase

of the “reference” coupling regime that has no edge states,
which here can be any chain with v > u,w.

Notice that, in the case of 3N sites, the hypersurfaces
where the borderlines between parameter regions with differ-
ent number of edge states were given by a, b = ±1, 0 with
a = u

w
and b = v

w
. What this means is that by changing adi-

abatically w, one could probe all the transitions (emergence
and disappearance of edge states) in a continuation diagram
of the spectrum with respect to w. However, in the case of
3N + 1 sites, the hypersurfaces of the transitions are given by
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FIG. 8. Continuation diagram for a finite SSH3 chain with 3N +
1 sites.

a′, b′ = ±1 with a′ = u
v

and b′ = w
v

. This means that a contin-
uation diagram with respect to w will miss a transition. Thus
the continuation diagram that captures all the transitions is
with respect to v in this case, as shown in Fig. 8. This diagram
verifies the predictions of NSZ for the case of 3N + 1, which
are presented in Table II. By taking this into account, it is easy
to create the phase diagram for the case of 3N + 1 sites on the
a′ − b′ plane.

B. The case of 3N + 2 sites

We turn now to the final case of 3N + 2 sites. In the chosen
gauge, it is easy to observe that the phase of the sublattice C
is always zero. Nevertheless, the bulk-edge correspondence
we have established also works for this case. That is, the
corresponding (gauge-invariant) quantity Zλ

C,C − Zλ,ref
C,C , which

trivially vanishes, should also here be interpreted as the differ-
ence in the number of edge states between the corresponding
Hamiltonians. Indeed, for the case of 3N + 2 sites, the open
chain always exhibits a constant number of edge states (i.e.,
two of the eigenstates are always edge states [44]), a fact
that is reflected consistently in the vanishing of Zλ

C,C − Zλ,ref
C,C .

Clearly, the (nonvanishing) actual number of edge states
present needs to be specified via a separate analysis, as was
the case for 3N and 3N + 1 sites.

V. OTHER SSHm MODELS

Last but not least, we point out that the introduced bulk
quantity along with our interpretation of bulk-edge correspon-

TABLE II. Difference of NS Zak’s phases Zλ
B,C − Zλ,ref

B,C for 3N +
1 sites in different regimes. The reference chain now is a chain with
a′, b′ < 1. It is worth noting that Zλ,ref

B,C is not always zero, but the
difference gives the correct number of edge states (see Fig. 8).

Zλ
B,C − Zλ,ref

B,C Zλ
B,C − Zλ,ref

B,C Zλ
B,C − Zλ,ref

B,C

Band λ a′, b′ > 1 a′ < 1, b′ > 1 a′, b′ < 1
a′ > 1, b′ < 1

0 π 0 0
1 2π 2π 0
2 π 0 0

FIG. 9. Comparison of NS Zak’s phase with Zak’s phase in the
case of an SSH4 without mirror symmetry. While Zak’s phase is not
quantized, NS Zak’s is quantized and predicts correctly the number
of edge states that each band contributes. The spectral diagram cor-
responds to a finite chain with 4N (where N = 20) sites. Due to that,
the NS Zak’s corresponding to the first sublattice has been utilized.
The bulk invariants for the first and second band are presented. The
results for the rest of the bands are identical due to chiral symmetry.

dence, works for the SSH model as well. Furthermore, NS
Zak’s phase turns out to be useful also for the SSH4 model,
where it can be utilized to establish a bulk-edge correspon-
dence even when mirror symmetry is absent.

In SSH (two sublattices) one can have two realizations of
finite chains. One with even and one with odd number of sites
(2N and 2N + 1). In the gauge where

|uλ(k)〉SSH = 1√
2

(
aA

λ (k)e−iθA
λ (k)

aB
λ (k)

)
, (26)

one can see that NS Zak’s phase of the first sublattice is
identical with Zak’s phase for this model. In fact, we have
demonstrated that the phase of the first sublattice can establish
a bulk-edge correspondence only for the case of an integer
number of unit cells. That is the reason that the usual Zak’s
phase gives a well-defined bulk-edge correspondence only for
the case of a chain with 2N sites. For the case of a chain with
2N + 1 sites, one should use the second sublattice according
to our treatment. However, the phase of this sublattice van-
ishes since there is always an edge state present [45] and thus
there is no difference in the number of edge states for different
regimes of the parameters of the Hamiltonian.

As a last demonstration of the power of our approach
we present some results for an SSH4, with an integer num-
ber of unit cells, that does not possess mirror symmetry.
Specifically, Fig. 9 strongly suggests that NS Zak’s phase can
establish a bulk-edge correspondence even in regimes where
the usual Zak’s phase does not take integer values. In the same
figure one can verify that NS Zak’s phase correctly predicts
the emergence of edge states for an SSH4 chain that does not
possesses mirror symmetry. This suggests that NS Zak’s phase
is more general than the ordinary Zak’s phase because it gives
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the correct results both in the presence and in the absence of
mirror symmetry. Furthermore, it seems easily extendable for
the general SSHm model.

VI. DISCUSSION AND OUTLOOK

We have thoroughly investigated the SSH3 model. We
showed that, even in the absence of chiral and mirror symme-
try, the fact that this model possesses point chiral symmetry
has important consequences on the spectrum of the bulk
Hamiltonian and the profile of the states. We showed that NS
Zak’s phase is a good bulk quantity that can trace the change
of the number of edge states in this system and establish a
bulk-edge correspondence even for chains with noninteger
number of unit cells (3N , 3N + 1, 3N + 2 sites). The frame-
work that we presented allowed us to calculate the finite-size
corrections and provided a concrete way to count edge states
even when the system possesses a relatively small number of
unit cells. The fact that this model possesses point chirality
hints towards an equivalence of odd and even SSHm models.
This means that the existence of quantized bulk quantities
in both cases may hint towards deeper common topological
features of these models. Lastly, the derivation of bulk-edge
correspondence that we provided in a relatively thorough
manner for the case of SSH3 implies that similar derivations
can be achieved for SSHm models with m sublattices. Specif-
ically, one can define NS Zak’s phases for each of the m
sublattices and establish a bulk-edge correspondence for all
the finite realizations of the SSHm model (any noninteger
cut of the unit cells). We have verified this numerically for
SSH4. The advantage of this technique relative to others is
that (a) it is simple—one can predict the number of edge states
for SSHm without having to solve m-degree characteristic
polynomials, (b) it provides bulk-edge correspondence for
noninteger number of unit cells, and (c) it gives a concrete
path to calculate finite-size corrections. We leave as a future
endeavor the treatment for the general SSHm model.
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APPENDIX A: GENERALISED CHIRALITY AND POINT
CHIRALITY IN SSH3

1. Generalised Chirality

Generalized chirality comes as a generalization of chiral
symmetry—instead of an operator that anticommutes with the
Hamiltonian, one can find an operator that obeys generalized
anticommutation relations. Specifically for the case of SSH3,

in analogy to the chiral operator, a unitary operator �g having
the following properties can be defined:

�3
g = 1, (A1a)

H0 + H1 + H2 = 0, (A1b)

where, by denoting the initial bulk Hamiltonian as H0,

H1 := �gH0�
−1
g ,

H2 := �gH1�
−1
g . (A2)

For the case of SSH3, and the bulk Hamiltonian of (B6), it is
easy to verify that an operator that obeys these relations exists,
and is

�g = diag(1, ω, ω2), (A3)

where ω := e2π i/3.
Using generalized chirality, one can define projectors over

the sublattices of the unit cell

PA = 1
3

(
I + �g + �2

g

)
, (A4a)

PB = 1
3

(
I + ω2�g + ω�2

g

)
, (A4b)

PC = 1
3

(
I + ω�g + ω2�2

g

)
. (A4c)

The Hamiltonian can be decomposed in the following manner:

H = PAHPB + PBHPC + PCHPA + H.c. (A5)

and the following holds

PAHPA = PBHPB = PCHPC = 0. (A6)

Relations (A6) reflect the fact that the probability of a transi-
tion from one site to another one within the same sublattice
is zero.

2. Point Chirality

As was already mentioned in the main text, SSH3 can be
viewed as a degenerate SSH6 [36]. This means that instead of
using (3) in order to describe the system, one could use

H (k) =

⎛
⎜⎜⎜⎜⎜⎝

0 u 0 0 0 we−ik

u 0 v 0 0 0
0 v 0 w 0 0
0 0 w 0 u 0
0 0 0 u 0 v

weik 0 0 0 v 0

⎞
⎟⎟⎟⎟⎟⎠, (A7)

which possesses chirality, i.e., a unitary and Hermitian oper-
ator � exists with �H (k)�−1 = −H (k). The bulk spectrum
of this Hamiltonian is essentially the zone-folded spectrum of
the SSH3 Hamiltonian.

The degenerate points of SSH6 at the edges of the folded
Brillouin zone correspond to the same points for SSH3 but
for k = π

2 . This means that these points will inherit some
properties from SSH6 when one unfolds the spectrum in order
to go to the SSH3. More specifically, since SSH6 posses chiral
symmetry, SSH3 will have a point chiral symmetry at k = π

2 .
This was formulated in Eq. (4). We proceed now with the
derivation of the consequences of point chirality for SSH3,
which is exactly analogous to the case of ordinary chiral
symmetry.

(a) Eigenstates always come in pairs with opposite energies.

085109-10



BULK-EDGE CORRESPONDENCE IN THE TRIMER … PHYSICAL REVIEW B 106, 085109 (2022)

Assume |u(k)〉 is an eigenvector of Hbulk (k) with nonvan-
ishing energy. Then,

Hbulk (k) |u(k)〉 = E (k) |u(k)〉
⇒ �pHbulk (k)�†

p�p |u(k)〉 = �pE (k) |u(k)〉
⇒ Hbulk (π + k)(�p |u(k)〉) = −E (k)(�p |u(k)〉), (A8)

which means that �p |u(k)〉 is eigenvector of Hbulk (π + k)
with eigenvalue −E (k). The above derivation is also inherited
to (i) finite periodic chains with even sites (since k + π is
an allowed wavenumber and hence point chirality is an exact
symmetry in that case), and (ii) finite open chains, since the
latter can be considered as embedded within an infinite chain
with appropriate boundary conditions.

(b) The partner eigenstates can be obtained from one an-
other by the action of �̃.

It follows directly from Eq. (7).
(c) Eigenstates have equal support on even and odd sites.
As is obvious from Eq. (7), for the extended chain, point

chirality takes the form of the familiar chiral operator. This
means that two sublattice operators can be defined in the
following manner:

Podd = 1
2 (I + �̃), (A9a)

Peven = 1
2 (I − �̃), (A9b)

and �̃ = Podd − Peven. From the orthogonality of states of the
finite Hamiltonian follows that

〈�|�̃p|�〉 = 0 ⇒ 〈�|Podd|�〉 = 〈�|Peven|�〉 . (A10)

APPENDIX B: DERIVATION OF THE MOMENTUM
SHIFT EQUATIONS

Here we show in detail how one can derive Eq. (14a)
following closely the approach of Ref. [22]. Our starting point
is the Hamiltonian

H = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 v 0 0 0 . . .

v 0 u 0 0 . . .

0 u 0 w 0 . . .
...

...
. . .

. . .
. . . . . .

0 . . . 0 0 0 0 w 0 0
0 . . . 0 0 0 w 0 v 0
0 . . . 0 0 0 0 v 0 u
0 . . . 0 0 0 0 0 u 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(B1)

for the case of SSH3. Our derivation is for a system with open
boundary conditions and an integer number of unit cells. For
later convenience, the (ordered) basis upon which (B1) is writ-
ten is (|3N〉 , |3N − 1〉 , . . . |2〉 , |1〉) with | j〉 being the jth site
of the chain. Our aim is to solve the eigenvalue-eigenvector
problem for this Hamiltonian. The characteristic polynomial
of this problem is denoted as

x1:3N (Eλ) = det(EλI − H ), (B2)

where we use a bottom up notation for the determinant (i.e.,
x1:1 is the determinant of a chain with a single particle at
position 3N and x1:3N is the determinant of a complete chain
with all 3N sites). From the form of the Hamiltonian (B1), it

follows that we can expand

x1:3N (Eλ) = Eλx1:3N−1 − u2x1:3N−2. (B3)

We observe that if we would like to write a corresponding rela-
tion for x1:3N−1, v would appear on the right-hand side instead
of u. For x1:3N−2, w would appear instead of u or v and for
x1:3N−3 we would return to the initial relation. This motivates
us to introduce the following notation: We define xi

n(Eλ) :=
x1:3n+1−i(Eλ), where i = 1, 2, 3 and n = 0, 1, 2, . . . , N where
xi

0 is to be determined by the boundary conditions.
By using this notation, we can rewrite (B3) as a set of

coupled equations:

x1
n (Eλ) = Eλx2

n − u2x3
n, x2

n (Eλ) = Eλx3
n − v2x1

n−1,

x3
n (Eλ) = Eλx1

n−1 − w2x2
n−2. (B4)

By doing a little bit of algebra, we arrive at

x1
n (Eλ) = (

E3
λ − Eλ(u2 + v2 + w2)

)
x1

n−1(Eλ)

− (uvw)2x1
n−2(Eλ). (B5)

The next step is to utilize the bulk solutions for Eλ(k) and
use this as a parameter in (B5). The bulk Hamiltonian reads

Hbulk (k) =
⎛
⎝ 0 u we−ik

u 0 v

wik v 0

⎞
⎠ (B6)

yielding the eigenvalue problem

det(EλI − Hbulk (k)) = 0,

E3
λ − Eλ(u2 + v2 + w2) + 2uvw cos(k) = 0. (B7)

By comparing (B7) and (B5) we see that we can get

x1
n (Eλ) = −2uvw cos(k)x1

n−1 − (uvw)2x1
n−2 (B8)

from which, all x1
n�2(Eλ) can be obtained if x1

0 and x1
1 (Eλ) are

known. We set as a boundary condition x1
0 (Eλ) = 1 and thus

x1
1 (Eλ) = x1:3(Eλ) = det

⎛
⎝Eλ u 0

u Eλ v

0 v Eλ

⎞
⎠

= Eλ(E2
λ − v2) − u2Eλ = E3

λ − Eλ(u2 + v2) (B9)

where we can use again (B7) and arrive at

x1
1 (λ) = −2uvw cos(k) + Eλw

2. (B10)

If we set T = −uvw, then (B8) takes the form

x1
n (Eλ) = 2T cos(k)x1

n−1(Eλ) − T 2x1
n−2(Eλ) (B11)

and if we redefine W 1
n (Eλ, cos(k)) = T N−nx1

n (Eλ), then (B11)
becomes

W 1
n = 2 cos(k)W 1

n−1 − W 1
n−2, (B12)

which is the recurrence relation of the Chebyshev polynomials
of second kind. Specifically the Chebyshev polynomials of the
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second kind are defined in the following manner:

U0(x) = 1, (B13)

U1(x) = 2x, (B14)

Un+1 = 2xUn(x) − Un−1(x). (B15)

This is the relevant case for our purposes with Un =
Un(cos(k)) and an extra boundary condition U−1 = 0. From
the definition of W 1

n (Eλ, cos(k)) we have

W 1
0 = T N (1 + 0) = T N (U0 + U−1), (B16)

W 1
1 = T N (2 cos(k) + a1

λ(k)) = T N (U1 + a1
λ(k)U0), (B17)

where a1
λ(k) = − w

uv
Eλ(k). So we arrive at the recursive

relation

W 1
n = T N

(
Un( cos(k)) + a1

λ(k)Un−1( cos(k))
)
. (B18)

Now, our initial aim was to solve x1
N (Eλ) = 0, which trans-

lates to W 1
N (Eλ, cos(k)) = 0. Using (B18) and the known

identity Un( cos(k)) = sin[(n+1)k]
sin(k) one gets

sin[(N + 1)k]

sin(k)
+ a1

λ(k)
sin(Nk)

sin(k)
= 0, (B19)

which, with some trigonometry transforms to

cot[(N + 1)k] = 1

a1
λ(k) sin(k)

+ cot(k). (B20)

As a result, we arrive at condition (14a). One may find
the general way to extract the corresponding relations for the
general SSHm model and also for the case with noninteger
unit cells in Ref. [22].

APPENDIX C: ANALYTICAL EXPRESSIONS FOR θA
λ (k),

θB
λ (k) AND THE EQUATION gλ(k) = 0

Here, we first derive an explicit expression for θA
λ (k) and

θB
λ (k) as a function of the hopping parameters. The character-

istic polynomial of the bulk Hamiltonian reads

E3
λ − Eλ(u2 + v2 + w2) + 2uvw cos(k) = 0. (C1)

This is the form of a depressed cubic, i.e., a polynomial of the
third degree in the form

t3 + pt + q = 0. (C2)

If all three roots are real (which are in the case we are
interested in since our Hamiltonian is Hermitian) the solutions
can be written in the trigonometric form

tk = 2

√
− p

3
cos

[
1

3
arccos

(
3q

2p

√
−3

p

)
− 2πk

3

]
(C3)

for k = 0, 1, 2.

By comparing (C1) and (C2) we see that p = −(u2 +
v2 + w2) and q = 2uvw cos(k). Thus the expression for a1

λ =
− w

uv
Eλ(k) is given by

a1
λ = −

√
4

3

√
1 + a2 + b2

ab

× cos

[
1

3
arccos

(
− ab cos k(

a2+b2+1
3

)3/2

)
− 2πλ

3

]
, (C4)

where λ = 0, 1, 2 enumerates the bands from bottom to top
and also we have expressed a := u

w
, b := v

w
. As a result, is

it easy to check that the following choice makes the angles
θA
λ (k) continuous (and differentiable) in (0, π ):

θA
λ (k) = arccot

(
1

a1
λ sin k

+ cot k

)
, λ = 0, 2 (C5a)

and

θA
λ (k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

arccot

(
1

a1
λ sin k

+ cot k

)
k ∈ (0, π/2]

arccot

(
1

a1
λ sin k

+ cot k

)
+ π k ∈ (π/2, π ]

, λ = 1

(C5b)

where arccot takes values in (0, π ).
Let us now explain why the equation gλ(k) = 0 determines

all hyperspaces, which separate regions with (possibly) differ-
ent values of Zλ

A,C .
First of all recall that, due to the divergence of Eq. (15) for

k → 0+, π−, we concluded that θA
λ (k) is an integer multiple of

π at these two points. Moreover, the sign of the divergence of
Eq. (15) as k → 0+ has to agree with the sign of the derivative
dθA

λ (k)/dk as k → 0, while the two signs have to be opposite
at k → π . In turn, from Eq. (C5) above one can read that, for
each band, there are at most two different values for θA

λ (k) at
k = 0 and different values always come with a different sign
in the derivative. A similar observation holds for k = π .

Combing these two last facts, we reach the conclusion that
a change in the value of the NS Zak’s phase Zλ

A,C is necessarily
associated with a change in the sign of the divergence of
Eq. (15), either at k → 0+ or k → π−. In turn, this sign
is determined by the numerator gλ(k) := 1 − w

uv
Eλ(k) cos(k).

This is because the energy Eλ(k) of each band has a fixed sign
at k = 0, π . Finally, due to continuity, a sign change can thus
only occur when gλ(k) = 0.

For the case of 3N + 1 sites, instead of aλ
1 one needs the

expression of aλ
2. The corresponding formula will be given

by aλ
2 = − uw

v
1

Eλ(k) and one can extract it by following the
method exhibited in Appendix B but by adding an extra site
to the initial Hamiltonian. For a more detailed treatment of
the momentum shift for noninteger number of unit cells, see
[22]. Then, in order to get θB

λ (k), one uses the relations given
in (C5) but with the substitution of aλ

1 with aλ
2.
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