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Corner states in a second-order mechanical
topological insulator
Chun-Wei Chen 1,4, Rajesh Chaunsali 2,4, Johan Christensen3, Georgios Theocharis2 & Jinkyu Yang1✉

Demonstration of topological boundary modes in elastic systems has attracted a great deal of

attention over the past few years due to its unique protection characteristic. Recently,

second-order topological insulators have been proposed in manipulating the topologically

protected localized states emerging only at corners. Here, we numerically and experimentally

study corner states in a two-dimensional phononic crystal, namely a continuous elastic plate

with embedded bolts in a hexagonal pattern. We create interfacial corners by adjoining trivial

and non-trivial topological configurations. Due to the rich interaction between the bolts and

the continuous elastic plate, we find a variety of corner states of and devoid of topological

origin. Strikingly, some of the corner states are not only highly-localized but also tunable.

Taking advantage of this property, we experimentally demonstrate asymmetric corner

localization in a Z-shaped domain wall. This finding could create interest in exploration of

tunable corner states for the use of advanced control of wave localization.
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Topological insulators provide researchers with efficient
ways to tailor and control the energy flow. These topolo-
gically non-trivial phases have drawn growing attention,

since the immunity to back-scattering—the key feature of topo-
logical protection—can help overcome defects and sharp bends
during energy transfer. Realization of these topological boundary
states has been demonstrated in classical systems, such as
acoustics and mechanics, through mimicking the quantum Hall
effect1,2, the quantum spin Hall effect3,4, or the quantum valley
Hall effect5–9. Recently, higher-order topological insulators with
multiple moments have been predicted theoretically10–12, and
parallel experimental works of the second-order topological
quadrupole insulators have been demonstrated in mechanics13,
microwave circuits14, electrical circuits15, photonics16, and
acoustics17.

To create a topological quadrupole insulator, negative hopping
parameter is a requisite ingredient. In practice, however, the
negative coupling needs much effort to design. Therefore, another
way based on bulk dipole moments has been proposed to form a
second-order topological insulator. By leveraging the crystalline
symmetry, “filling anomaly” explains the existence of in-gap
corner states in these insulators18. The corner states of such
second-order topological crystalline insulators with vanishing
quadrupole moment have been studied primarily in square19–26

and Kagome lattices27–31. Recent studies in photonics32,33 have
shown that hexagonal lattices can also support corner modes with
interesting properties, but their mechanical analog has been
limited to discrete mechanical structures which lack the engi-
neering potential and practicality34.

In this work, we propose a bolted plate structure as a con-
tinuous platform of a second-order topological insulator. The
plate is decorated with bolts, which act as resonators, arranged in
C6-symmetric hexagonal lattice. For the topological character-
ization, we approximate our system with a thin plate attached
with lumped-masses35. Then, the topological indices are deter-
mined based on the rotational symmetries of eigenmodes at the
high-symmetry points in the Brillouin zone. By joining two
topologically-distinct configurations, we report the generation of
two different types of corner modes: one with topological origin
and the other without it. Interestingly, we find that the one
without topological origin exhibits tunability when adjacent
domains are interchanged. By leveraging these characteristics, we
experimentally demonstrate a one-way corner localization of
mechanical waves in a Z-shaped domain wall. This asymmetric
wave localization mechanism can be used for advanced control of
energy flow.

Results and discussion
System and unit-cell dispersion. In Fig. 1a, steel bolts are
mounted hexagonally in an aluminum plate. See Fig. 1b for the
graphical illustration of the unit cell. The lattice constant is a= 45
mm. R is the circumferential radius of six bolts, which is a tuning
parameter of creating the trivial and non-trivial band gap. The
enlarged unit cell in Fig. 1c shows that as R increases, the six bolts
gradually expand until reaching the limit of the unit cell’s
boundary as represented in yellow; whereas, as the R decreases,
the six bolts gradually merge into the center as indicated in red.
The band structure of R= 1.0a/3, R= 0.8a/3, and R= 1.1a/3 are
shown in Fig. 1d–f, respectively, based on finite element analysis
(FEA, see “Methods” for more details). The color bar quantifies
the dominance of plate displacement in out-of-plane (z) direc-

tion, which is defined as Πz ¼
R

V
jwj2dVR

V
ðjuj2þjvj2þjwj2ÞdV, where V is the

volume of the plate of a unit cell and u, v, and w are the dis-
placement components in x, y, and z axes. When Πz= 1, it means

that the eigenmode is completely dominated by the out-of-plane
motion; whereas, when Πz= 0, the eigenmode is entirely domi-
nated by the in-plane motion. From Fig. 1d, we see that there is a
double Dirac cone at the Γ point at 7.27 kHz due to the zone-
folding36. Once the radius R= a/3 is no longer maintained, the
double Dirac point opens and creates a band gap (Fig. 1e, f).

Topological characterization. We can perform the topological
characterization of the band gaps based on the pseudospins of
eigenmodes at the Γ point36,37. This analog of the quantum spin-
Hall effect helps us predict the existence of chiral edge states at the
interface between two domains made of shrunk (R < a/3) and
expanded (R > a/3) unit cells. In the present study, however, we
are interested in the corner states, and therefore, we characterize
the band gaps based on quadrupole38 or rotation invariants18,32,39.
These rely on the parity (the eigenvalue of π rotation over the z
axis) of eigenmodes at the Γ andM points of the Brillouin zone for
every band below the band gap. In the insets of Fig. 1e, f, we plot
eigenmodes for the first two bands immediately below the band
gap at the Γ and M points (light green stars) and calculate their
parity. For the shrunk configuration, the two bands have−1 parity
at the Γ and M points. However, for the expanded configuration,
the two bands have +1 parity at the Γ point, but the opposite
parity at the M point as marked in insets.

Ideally, this characterization process needs to be repeated for
all bands below the band gaps. This is a complicated task due to
the existence of the numerous dispersion curves (see Fig. 1e, f),
which result from the multi degrees-of-freedom and coupling
between the bolt and the plate. To simplify this, we approximate
the system into a lumped-mass model, in which the bolts
are modeled as point masses connected to the plate with
transverse springs35 (see “Methods” and Supplementary Note 1
for more details on this model and its validity). As a result, we can
calculate the parity for all the bands below the band gap, and

Fig. 1 Unitcell and band structures. a Continuous plate structure with
hexagonally arranged bolts (blue dots). The translation vectors ~a1 and ~a2
and the corresponding reciprocal vectors ~b1 and ~b2 in the first Brillouin zone
(inset). b A graphical illustration of the unit cell. c An enlarged plot of the
unit cell with expanded (R > a/3, yellow) and shrunk (R < a/3, red)
arrangements of the mounted bolts. d R= a/3 case, which is exactly the
honeycomb lattice with a double Dirac cone at the Γ point. Colorbar
represents the level of the out-of-plane motion. e R= 0.8a/3 case, which
leads to the emergence of a trivial band gap represented in gray rectangle.
Inset shows the four corresponding eigenmodes extracted from the marked
green stars at the M and Γ points. f R= 1.1a/3 case with a non-trivial
band gap.
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obtain quadrupole 0 and 1/2, and rotation invariants [0, 0] and
[2, 0] for the shrunk (trivial) and expanded (nontrivial) unit cells,
respectively. This establishes topological distinction of the two
band gaps shown in Fig. 1e, f.

Supercell analysis. We return to the FEA approach and first
perform a supercell analysis by adjoining six non-trivial
(R= 1.1a/3) and six trivial cells (R= 0.8a/3) (Fig. 2a). The ter-
minations are free, and the sides are Floquet-periodic. We observe
that the interface hosts chiral propagating modes inside the bulk
band gap of the supercell dispersion in Fig. 2b. These propagate in
opposite directions with two opposite pseudospins (clockwise and
counterclockwise in purple and yellow, respectively), mimicking
pseudo spin-Hall effect36. However, these edge states are gapped
(BG1 and BG2) as opposed to the quantum spin-Hall effect for
fermions that supports gapless edge states protected by the time-
reversal symmetry40. Even though there are ways to close these
gaps for a broadband wave propagation at the interface41, we
deliberately use them to look for potential corner modes in this
study. BG1 is the gap in the interface spectrum. This emerges due
to the breakage of crystalline C6 symmetry at the interface and
exists as long as there are cells across the interface with different
radii R (see Supplementary Note 2 and Supplementary Fig. 3b).
BG2 is at a higher frequency and lies above this interface spec-
trum and below the bulk spectrum (black). Since BG2 does not
exist in the lumped-mass model, in which the bolts are modeled
as point masses, we conjecture that BG2 emerges due to the
interactions of the finite-sized bolts with the plate.

Emergence of corner states. To observe corner states and
investigate their differences systematically, we construct a
rhombus-shaped, topologically non-trivial domain (R= 1.1a/3)
inside the trivial domain (R= 0.8a/3) (Fig. 3a). This contains two
120∘ corners and two 60∘ corners. We also consider the “inverted”
configuration, in which the two domains are interchanged. We
then perform the eigenfrequency analysis on both the config-
urations and show the results in Fig. 3b. We observe the emer-
gence of several corner states marked with green and red stars.

In Fig. 3c, we show the low-frequency corner states for the
rhombus-shaped structure of Fig. 3a while in Fig. 3d the corner
modes of the inverted configuration. These corner states reside in
the topological gap BG1. Importantly, we find that only 120∘

corners support these states. For the verification, we parameterize
our system with the unit cells with varying radii and find that
these corner states exist robustly even for a small difference in
radii between the trivial and non-trivial cells (see Supplementary

Note 2 for details). Interestingly, there are also high-frequency
corner states, marked by red and green stars in Fig. 3b, which
reside in BG2. We observe that both 60∘ and 120∘ corners support
these states as shown in Fig. 3e, f. However, these exist only in the
regular configuration shown in Fig. 3a, but not in the inverted
configuration. This hints at their nontopological origin, which we
again verify by performing a parametric study with varying radii
of unit cells (see Supplementary Note 2 and Supplementary Fig. 2
for details). We find that these states exist only for a large
difference in radii between the trivial and non-trivial unit cells but
are not predicted by our simplified lumped-mass model. This
suggests that they appear due to the complex interaction of bolt-
plate assembly that the lumped-mass model fails to capture. Their
mode shapes also differ from the ones in BG1. For example, the
states shown in Fig. 3e have the peak displacement occurring at
the most cornered bolt within the non-trivial unit cell, while the
adjacent two bolts have nonzero displacements. This is consistent
with the topologically-trivial corner modes reported in ref. 32.
Recently, a new type of corner state was discovered due to long-
range interactions in a Kagome lattice for electromagnetic

Fig. 2 Supercell and its dispersion relation. a A supercell made by placing
six non-trivial (R= 1.1a/3) and six trivial (R= 0.8a/3) cells adjacently.
b Eigenfrequencies of the supercell as a function of wave numbers in the
periodic direction. Bulk bands are in black. There are two edge modes with
opposite pseudospins (purple and yellow) inside the bulk band gap, where
two mini gaps (BG1 and BG2) are generated.

Fig. 3 The appearance of two kinds of corner state. a A rhombus-shaped
structure with an interface between two domains: R= 1.1a/3 (inner) and
R= 0.8a/3 (outer). b The eigenfrequency for the configuration in (a) and
its inverted counterpart. Bulk band gap is marked in gray. Green and red
stars represent the corner states. c–f Eigenmodes of the corner states
corresponding to the stars in (b). The color map represents the amplitude
of the out-of-plane displacements, ∣w∣.
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waves42. Though we study flexural waves in a hexagonal lattice
here, it will be an interesting future direction to explore all design
parameters in a mechanical system to confirm such a corner state.

What makes the corner states observed in BG2 unique is their
tunability when domains are interchanged, and also their novel
emergence in this bolted-plate assembly. Moreover, their higher
spatial localization helps us realize them in our table-top
environment with a smaller sample. These characteristics will
be leveraged to achieve one-way energy localization as
described below.

Experimental demonstration. We build a Z-shaped domain wall
that includes two different types of 60∘ corners in one setup
(Fig. 4a, see “Methods” for the fabrication and measurements
detail). From the simulation results shown earlier, we know that
the corner state in BG2 exists only in the case when the non-
trivial cells are surrounded by the trivial cells (Fig. 3e, f), i.e., at
corner (II) in Fig. 4a. This is again verified by the eigen-frequency
analysis on this particular setup. Figure 4b shows a highly-
localized corner state with f= 8.52 kHz at the corner (II).

We excite the plate using a piezoelectric ceramic actuator by
placing it at corner (I) and (II) in two separate experiments. We
use a chirp signal with the frequency range of 2–40 kHz. A point-
by-point measurement is then conducted by using the laser
Doppler vibrometer to detect the flexural waves. By gathering and
reconstructing measured data from all the points, we plot the
steady-state wave-field at f= 8.49 kHz (Fig. 4c, d). When corner
(I) is excited, there is no evidence of a corner state apart from the

usual exponentially decaying evanescent field (Fig. 4c). When we
excite corner (II), however, we observe clear confinement of
energy due to the presence of the corner mode (Fig. 4d). Along
with closely matching frequencies, the profile of the corner mode
also matches well with the simulation results in that the last two
resonators of the non-trivial unit cell have peak displacements
(compare Fig. 4b, d). However, there is a slight difference in the
profiles obtained numerically and experimentally shown in
Fig. 4b, d, respectively. This difference is mainly accentuated
along the horizontal interface. We attribute this to the
imperfection in the assembly of bolts, by which tiny BG2 could
be distorted.

Next, we exploit this selective localization observed in the
previous test to demonstrate a one-way localization through the
Z-shaped interface. We excite the plate with a harmonic
excitation at f= 8.49 kHz in the middle of the interface and
show numerical prediction in Fig. 5a. We observe that due to
evanescent coupling, it is possible to excite the state at corner (II).
At the same time, corner (I) on the left, being at the same distance
from the center, does not support any such energy localization as
there is no corner mode there. This is verified in the experimental
results shown in Fig. 5b. There is a difference in the modal
amplitude along the horizontal interface due to the corner mode
profile discussed earlier in Fig. 4d. It is however evident that we
witness one-way corner localization in our mechanical setup.
Such asymmetric wave localization is a highly useful—yet
relatively unexplored—feature that can be exploited to manip-
ulate energy flow at will.

Fig. 4 Experimental verification of the corner state at 60∘ corners. a A Z-shaped interface with two different 60∘ corners is created via placing trivial cells
(R= 0.8a/3) with non-trivial cells (R= 1.1a/3) adjacently. The red stars mark the locations of the piezo-actuators that excite the elastic plate. b A
simulated eigenmode shows that corner state appear only at the corner (II) at f= 8.52 kHz. c, d Experimentally-extracted wave field in the bolted plate
when the piezo-actuator is attached on the corner (I) and corner (II), respectively, and excited at f= 8.49 kHz.

Fig. 5 Demonstration of asymmetric wave localization when the source excites the middle of the Z-shaped interface. a Simulated wave field with
harmonic excitation at f= 8.49 kHz showing the excitation of the corner state on the right. b Experimentally-extracted wave field captures the excitation of
the corner mode marked within the circle.
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Conclusion. We propose a ubiquitous design of a bolted plate in
the hexagonal arrangement to demonstrate in-gap corner states in
our C6-symmetry-protected system. By changing the radius of the
unit cell, we construct two configurations that show topologically
distinct band gaps. We perform topological characterization of
the bolted-plate assembly based on a simple lumped-mass model.
When two such topologically distinct bolted-plates are placed
adjacently, we conduct full geometry simulations to show that
there are two regions (mini gaps) in frequency where different
types of corner modes can exist. We find that the lower-frequency
corner states are of topological origin and the higher-frequency
corner states are of nontopological origin. While the former can
be predicted by the lumped-mass model, the latter can not.
However, the nontopological corner states are highly localized for
both 60∘ and 120∘ corners and can be made to exist or not based
on the inversion of topologically-distinct domains across the
interface. This fact is thus used to create a Z-shaped interface
between topologically distinct domains for achieving an asym-
metric localization of energy. We expect that these findings will
enrich the wave-localization phenomena in mechanics and
encourage new applications in vibration management.

Methods
Numerical modeling of bolted-plate structure. The commercial finite element
software (COMSOL MULTIPHYSICS) is used for numerical modeling. The
material properties of the steel bolt are Young’s modulus E= 210.60 GPa, density
ρ= 7800 kg m−3, and Poisson’s ratio ν= 0.30. The material properties of the
aluminum plate are Young’s modulus E= 68.9 GPa, density ρ= 2700 kg m−3 and
Poisson’s ratio ν= 0.33. To account for the imperfect mechanical contact between
the plate and the bolts, a reduced contact stiffness model can be employed37.
However, this method is extremely costly in terms of computation time, especially
when solving the eigenfrequencies of the full structure. Thus, we employ an
alternative, computationally-inexpensive method by altering the bolt’s density. The
density is determined by computing the frequency of the corner states and match
them empirically with those obtained from the measured corner states.

This numerical method based on the finite element method is used not only for
the full structure simulations for the corner state calculation, but also for the
supercell analysis. In supercell simulation, long sides are set to be periodic
boundaries via Floquet periodicity. The short sides of the supercell are set to be
free. The boundaries of the rest of finite-element simulations we have conducted
are set to be free boundaries.

Lumped-mass model. Essential features of the bolted-plate structure can be
captured by a simplified lumped-mass model. Let us have points of mass m
attached to a thin elastic plate of thickness h with a linear spring of stiffness
coefficient β. Here we only consider the out-of-plane motion of the plate and
masses. Following ref. 35, we write the equations of motion at frequency ω as

D∇4wðrÞ � ω2ρhwðrÞ ¼ �β∑
α
½wðRαÞ � ~wðRαÞ�δðr� RαÞ; ð1aÞ

�ω2m~wðRαÞ ¼ β½wðRαÞ � ~wðRαÞ�; ð1bÞ
where D= Eh3/12(1− ν2) is the flexural rigidity of the plate, w(r) is the transverse
displacement of the plate at the generalized coordinate r= (x, y), ~wðRαÞ is the
displacement of the resonators attached at points Rα on the plate, and δ(r) is a delta
function in two dimensions. α= 1, 2, ..., 6 for six resonators within the unit cell. We
non-dimensionalize frequency and mass as Ω ¼ ωa2

ffiffiffiffiffiffiffiffiffiffiffi
ρh=D

p
and γ=m/(ρAch),

where Ac ¼
ffiffiffi
3

p
a2=2 is the area of the unit cell.

We then use the plane wave expansion method to write plate displacement as a
superposition of plane waves for a given Bloch wave vector k as

wðrÞ ¼ ∑
g
WðgÞe�iðkþgÞ�r; ð2Þ

where W(g) is the plane wave coefficient as a function of reciprocal lattice vector g.
Substituting this into the equations of motion, we obtain an eigenvalue problem for
W(g), which is used to plot the dispersion curve Ω(k) (see Supplementary Fig. 1).
For detecting the corner states in the rhombus-shaped interface, we treat the whole
2D structure as a unit cell and apply Floquet boundary conditions. We evaluate the
solutions at Bloch wave vector k= 0, which is sufficient to capture the corner states
in the system (Supplementary Fig. 3).

Topological characterization. We first follow the method based on quadrupole
calculated from bulk polarization38. The bulk polarization is given as
Pn ¼ ðPn

i ; P
n
j Þ, where Pn

i;j are bulk polarization in two independent directions for
the nth band. For C6-symmetric crystalline system as ours, we can calculate the

bulk polarization of a band using the following relation directly38:

Pn
i ¼ 1

2
qni modulo 2
� �

; �1ð Þqni ¼ ηn Mi

� �

ηn Γð Þ ; ð3Þ

where i indicates the polarization direction of bi (Fig. 1a) and ηn() (parity) denotes
the eigenvalue of π rotation over the z axis for the nth band. Mi and Γ are the
symmetrical points in the first Brillouin zone. qni takes odd (even) values when ηn()
are opposite (identical) at the Mi and Γ points. A quadrupole is then defined as38

Qij ¼ ∑
N

n¼1
Pn
i P

n
j ; ð4Þ

where there are N bands below the band gap. Note that due to C6 symmetry, we
have Pn

i ¼ Pn
j . See Supplementary Note 1 for the calculations.

Alternatively, we calculate the topological invariant for C6-symmetry-protected
system as defined in refs. 18,32. Following the terminology of these papers, bulk
topology of our system is classified by:

χð6Þ ¼ ð½M�; ½K�Þ; ð5Þ
where ½M�; ½K� 2 Z are C2 and C3 invariants, respectively, and are defined as

½M� ¼ #M1 �#Γð2Þ1 ; ð6aÞ

K½ � ¼ #K1 �#Γð3Þ1 ; ð6bÞ
where #M1 (#Γð2Þ1 ) is the number of bands below the band gap with C2 (π) rotation
eigenvalue +1 at the M (Γ) points of the Brillouin zone, and #K1 (#Γð3Þ1 ) is the
number of bands below the band gap with C3 (π/3) rotation eigenvalue +1 at the K
(Γ) points of the Brillouin zone. See Supplementary Note 1 for the calculations.

Sample fabrications and experimental measurements. The plate is 914 × 610 ×
2mm made of 6061-T6 aluminum and M4-0.7-mm black-oxide alloy steel bolts
(91290A180, McMaster-Carr) are chosen as the local resonators. The CNC mill
machine is used to drill 1320 through holes and then tap the threads for each hole.
Next step is to assemble 1320 steel bolts by using an electric screwdriver with the same
torque to fasten those on top of the thin plate. We particularly choose the partially
unthreaded bolts so that the unthreaded part is treated as a limiter. A drop of
superglue is applied to facilitate the connection between the unthreaded part of steel
bolts and thin plate. The fabricated bolted plate can be seen in Supplementary Fig. 4.

The piezo-actuators (STEMiNC, diameter 10 mm, and thickness 1 mm) are
bonded on the left corner, middle, and right corner of the bolted plate with silver
epoxy adhesive. The input signal of the piezo-actuator is controlled by the function
generator and amplified by the voltage amplifier. To perform the measurement, we
use the laser Doppler vibrometer mounted on a bi-axial linear moving stage to
conduct a point-by-point measurement on the bolted plate with a 7.5 × 7.5 mm
square grid. The measurement points are 6600 points in total including 110 points
horizontally and 60 points vertically. The piezo-actuator is excited with a chirp
signal from 2 to 40 kHz in 100 ms duration. All the measurements are
synchronized with the onset input signal from the function generator. After
obtaining the data from all of measured points, the fast Fourier transformation is
employed to all measured time history profile to get frequency spectrum, which can
construct a 2D steady-state transmission map in the frequency of interest. To
enhance the visualization of 2D wave field, the cubic interpolation is applied among
the measured points.

Data availability
The data that support plots and related findings of this work are available from the
corresponding author upon reasonable request.

Code availability
The code for obtaining the corner states of this work are available from the
corresponding author upon reasonable request.
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