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Abstract
The recent emergence of topological insulators in condensedmatter physics has inspired analogous
wave phenomena inmechanical systems.However, to date, the design of thesemechanical systems has
been limitedmostly to discrete lattices or perforated structures. Here, we take a ubiquitous design of a
bolted elastic plate and demonstrate that it can guide flexural waves crisply around sharp bends.We
show that this continuum system eliminates unwanted in-plane platemodes and allows the
manipulation of low-frequency flexuralmodes by exploiting the local resonance of the bolts.We
report the existence of a pair of doubleDirac cones near the resonant frequency of the bolts, one of
which leads to the creation of a topological complete bandgap that forbids all the platemodes. These
findings open newpossibilities ofmanagingmultiple wavemodes in elastic solids for applications in
energy harvesting, impactmitigation, and structural healthmonitoring.

1. Introduction

The discovery of topological insulators in condensedmatter physics has prompted a newnotion of topology in
associationwith the intrinsic dispersion behavior of amaterial[1, 2]. By using this concept, one can characterize
the dispersion behavior of an infinite ‘bulk’material, which consequently provides a tool to predict the response
at the ‘boundaries’ of afinitematerial. This ‘bulk-boundary correspondence’ leads to a topologically protected
boundary response of a non-trivial bulk, thereby offering a degree of robustness. At the physical level, the
topological insulator has thus shown an exotic state, inwhich a robust and directional currentflows along the
material’s boundary, while it is forbidden in the bulk.

This tool of topology has paved away for researchers to control the flowof energy in other areas, such as
photonics [3] and acoustics [4–7]. It has also given an impetus to a newway of designing elastic systems [8–19].
These topological structures—mostly in the setting of discrete lattices or perforated structures—aim at
manipulating elastic vibrations and offer a tremendous degree offlexibility in controlling their dynamic
responses. Therefore, these prototypical systems are excellent candidates for tabletop designs, inwhich
topological physics can be systematically investigated [20]. However, one of the outstanding challenges in the
topologicalmanipulation of elastic systems is to have control over several types of wavemodes that can exist in
elastic solids, particularly in a low-frequency domain. This becomes evenmore relevant when one goes beyond
the discrete latticemodels and considers continuum structures such as plates. Though a judiciousmanipulation
of platemodes has been shown in high frequencies [21–23], a simple design of low-frequencywaveguiding
remains yet challenging. Conventional designs thus far tend to focus selectively on certain platemodes, and
therefore, are prone to energy leakage through othermodes [24–27].

A natural question is whether there exists away tomanipulate flexural plate waves at low frequencies yet
avoiding thewave leakage into othermodes. This can be of significant importance, because low-frequency
flexuralmodes typically carry high vibrational energy. Their efficientmanipulation can be useful for several
engineering applications, such as energy harvesting, vibration isolation, and structural healthmonitoring.
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However, lowering the operating frequencies generally demands large lattice sizes due to the Bragg condition.
This can pose challenges especially under stringent size limitations of wavemedia. Recent studies in photonics
[28] and acoustics [29] have proposed the use of resonating elements within a topologicalmedium to lower the
operating frequencies. In elastic systems, recent numerical investigations have provided novel solutions to these
issues [26, 30, 31]. However, the experimental realization of topologicalmanipulation of low-frequency elastic
waves remains a formidable challenge to date.

Here we propose a ubiquitous design of bolted plates to tackle the aforementioned challenges. This strikingly
simple design complements the topological physics in a continuum elastic platewith themechanismof local
resonance of bolts [32]. The design is rich in physics as it allows not only the out-of-plane coupling between the
mounted bolts and the plate, but also the interweaving of their bendingwith in-planemodes. This results in a
simultaneous effect of guiding low-frequency flexural platemodes and removing unwanted in-planemodes. To
achieve this, we employ the zone-folding technique [33] to invoke theC6 symmetry-protected pseudo-spinHall
effect andmanipulate flexural waves by strategically arranging the bolts on the plate. Remarkably, this bolted
plate system forms a pair of doubleDirac cones [34] in the low-frequency range of the bolt’s bending resonance.
We numerically investigate the opening ofmultiple topological bandgaps bymanipulating the bolt arrangement
on the plate, one of which is notably a complete bandgap (CBG) that prevents the leakage offlexural waves into
othermodes.We experimentally verify the efficient waveguiding capability of this bolted plate along a pathwith
sharp bends, when excited at frequencies inside these topological bandgaps.

2. The locally resonant topological plate

2.1.Design and fabrication
Our system consists of a thin plate and bolts that are tightly fastened to form a periodic pattern. As a starting
point, we take a hexagonal lattice pattern shown infigure 1(A).We focus on a large unit-cell representation, i.e. a
rhombus-shaped unit cell (lattice constant a= 45 mm) that contains six bolts to facilitate zone-folding.We then
perturb this unit cell by varying the circumferential radiusR of themounted bolts aroundR=a/3 (figure 1(B)).
This is to obtain two topologically distinct unit-cell configurations of the bolted plate. Note that, in the process,
we keep theC6 symmetry intact in the unit cell, so that we obtain degeneratemodes in the dispersion to be shown
later. These two types of unit cells, specifically R a0.8 3= and a1.1 3 in this study, are then tessellated to form a

Figure 1. System configuration. (A)Ahexagonal lattice arrangement with the unit cell containing six elements. The corresponding
first Brillouin zone (FBZ) is indicated. (B)This unit cell is perturbed aroundR=a/3 to obtain two topologically distinct unit cells.
Bolts act as local resonatorsmounted on a thin plate. (C)A snapshot of the actual systemwithmultiple boltsmounted on the plate. (D)
The experimental setup, inwhich a domainwall is created between two topologically distinct lattice patterns in yellow and violet. The
plate is excited by a piezoelectric actuator positioned at the center, and out-of-plane velocity ismeasured point-by-point by an LDV
mounted on a two-axis linear stage.
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periodic pattern in the plate (figure 1(C)).We construct a domainwall consisting of three linear segments (one
horizontal and two inclined at 60◦) by joining these two types of periodic patterns (figure 1(D)).

The substrate is an aluminum6061-T6 plate (91.4×61.0 cm and thickness t= 2 mm).We use aCNC
millingmachine to drill 1320 holes, followed bymanual tapping and fasteningM4-0.7 mmblack-oxide alloy
steel bolts (91290A180,McMaster-Carr). To facilitate thefirm contact between the bolts and the threads of the
plate, we add a drop of glue (Henkel Loctite adhesive) in the process ofmounting bolts using a screwdriver
(movie 1 is available online at stacks.iop.org/NJP/20/113036/mmedia). The partial thread on the screws comes
handy, as it allows tightening them firmly on the plate without using any additional nuts.

2.2. Experimentalmeasurements and processing
To excite the system, we bond a piezoelectric ceramic disc (STEMiNC, diameter 10 mm, and thickness 1 mm)
with silver epoxy adhesive on the plate as shown infigure 1(D).Wemount the PolytecOFV534 laserDoppler
vibrometer (LDV) on the two-axis linear stage and control itsmotion usingMATLAB tomeasure vibrations on
the plate. The LDV takes point-by-pointmeasurements bymoving in a square grid of 7.5×7.5 mm.We
measure 114 points horizontally and 60 points vertically, i.e. a total of 6840 points. Allmeasurements are
synchronizedwith respect to the onset of the input voltage signal from the function generator, which sends a
signal to the piezoelectric actuator via an amplifier. To get the steady-state transmission profiles, we send a 100
mswide frequency sweep signal from2 to 40 kHz. Then, we employ fast Fourier transformation on the time-
history obtained by eachmeasurement and construct a 2D transmission profile for a frequency slice. To get the
transient wavefields, we send aGauss-modulated sine pulsewith 80 cycles at a given center frequency.We apply
a bandpass filter around the center frequencies to eliminate ground noise on the plate. Then, we use a cubic
interpolation on themeasured grid data for a better visualization of wavefield on the plate.

2.3. Numericalmodeling
Weuse commercial finite element software (COMSOLMultiphysics) to performnumerical simulations.We
take nominalmaterial properties of the aluminumplate (Young’smodulus E=68.90 GPa, density
ρ=2700 kg m−3, Poisson ratio ν=0.33) and steel bolts (Young’smodulus E=210.60 GPa, density
ρ=7800 kg m−3, Poisson ratio ν=0.30). See appendix A for the geometric details of the bolt. The threaded
contact between the bolt and plate ismodeled using a simple approach, which captures the realistic contact
stiffness bymodeling an effecting contact area (see appendix B).Wemesh themodel with tetrahedral elements.
To obtain the dispersion diagrams, we take a unit-cell and apply Bloch–Floquet boundary conditions and solve
for eigenfrequencies along the irreducible Brillouin zone.

3. Results

3.1. Unit-cell dispersion and band inversion
Infigure 2, we numerically showdispersion diagrams for the unit-cell configurations with radii varying across
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Vu is the plate volume in the unit cell, and ux, uy, and uz are the displacement components in x, y, and z axis,
respectively. Pzwould be close to 1 for out-of-plane platemodes and near 0 for in-plane platemodes. For
R=0.8a/3, we observe two distinct bandgaps in the range of 6.2–8.5 kHz infigure 2(A). Clearly, the
polarization index confirms that the bandgaps are for out-of-planemodes (bluemarkers). The lower bandgap is
a partial bandgap (PBG) because it supports nearly in-planemodes (S0 and SH0) shownwith red and yellow
markers. Notably, the upper one is a CBG. This is because the bending-dominated local resonance of the bolts
occurs near 6.9 kHz (see the horizontal bluemarkers in figure 2(A)), and it is coupledwith in-planemodes of the
plate (further explanations to follow next). This results in a locally resonant bandgap (see the two-sided arrow)
for ‘undesired’ in-planemodes (red and yellowmarkers) in the range of 6.9–9.4 kHz. Consequently, we observe
aCBGbetween 6.9 and 8.5 kHz for all platemodes.

This is an example of judicious engineering of overlapping two types of bandgaps: locally resonant bandgap
for in-planemodes andBragg bandgap for out-of-planemodes in the same system.We call the later Bragg
bandgaps because those emerge solely when the translational symmetry in the system is changed by varying the
radius acrossR=a/3. This point can be further justified if we plot the dispersion diagram for the case of the
perfectly hexagonal system, i.e. withR=a/3, infigure 2(B).We observe that both bandgaps (denoted by PBG
andCBGabove) close. However, the bandgap for in-planemodes (redmarkers) remains intact, because it is a
locally resonant bandgap caused by the local bending of the bolts, whichwe do not change in the process (see the
two-sided arrow). Remarkably, near the resonant frequency of the bolts, we observe the formation of a pair of
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distinct doubleDirac cones (see the panel belowfigure 2(B) for the zoomed-in view of the dispersion curves
alongwith themode shape of the resonant bolts). To the best of the authors’ knowledge, the creation of such
multiple doubleDirac cones at different frequencies in an elastic systemhas not been reported in the literature.

Infigure 2(C), we plot the dispersion diagram for the casewhenwe further increase the unit-cell radius to
R=1.1a/3.We choose this radius to avoid the bolts approaching too close to the unit cell boundary, and at the
same time to ensure an overlapwith the bandgaps established in R a0.8 3= (compare the locations of
bandgaps between figures 2(A) and (C)).We observe that the two doubleDirac cones open again and form two
bandgaps.However, these are different from the ones observed infigure 2(A) in terms of topology. For further
investigation, we revisit figure 2(A), examine the out-of-planemode shapes, and plot them infigure 2(D). For
the lower bandgap, i.e. PBG,we extract themode shapes of its edges at theΓ point.We observe that two p-type
modes are degenerate at the lower edge, i.e.Γ(DOWN), and two d-typemodes are degenerate at the upper edge,
i.e.Γ(UP). Naturally, the d-typemodes showprominent bending of the bolts, approaching the vicinity of local
resonance region around 6.9 kHz. A similar pattern is observed for the upper bandgap (CBG) aswell, wherein
d-typemodes are at the upper edge. Sandwiched between these two regions are the locally resonant bending
modes of the bolts.

Infigure 2(E), we plot themode shapes at the aforementioned band edges at theΓ point, but for the
configurationwith R a1.1 3= shown infigure 2(C). A similar degeneracy ofmodes is observed. However, p-
typemodes are at higher frequencies than d-typemodes for both bandgaps. This so-called band-inversion is a
crucial ingredient of the topological phenomena at work andmakes this configuration topologically non-trivial.
Thismechanism is reminiscent of the pseudo-spinHall effect in photonics [33], where the degeneracy of p- and
d-typemodes is used for creating two counter-propagating pseudo-spinmodes at the domainwall between two
topologically distinct unit cells. Herewe realize this effect for aflexural wave at a low-frequency regime (i.e. in
the vicinity of the bendingmode of the bolts) in a continuumplate.

3.2. Emergence of topological interface state
Nowmoving to themulticell configuration, wefirst take a supercell consisting of eight unit cells of each type and
join them to form a domainwall as shown infigure 3(A).We apply a periodic boundary condition in parallel to

Figure 2.Presence ofmultiple bandgaps and their inversion in the unit-cell dispersion. (A)Acase withR<a/3 leading to the
emergence of two bandgaps. The color of themarkers indicates the polarization of platemode, i.e. it is nearly 1 for out-of-plane and
nearly 0 for in-plane platemodes. The lower bandgap is a partial bandgap (PBG) due to the presence of other nearly in-plane plate
modes. The upper bandgap is aCBG for all platemodes. The two-sided arrow indicates the locally resonant bandgap for in-plane
modes. (B), In the hexagonal lattice arrangement, i.e.R=a/3, these bandgaps close and form two distinct doubleDirac cones. A
zoomed-in view is in the inset below to show the bolt bendingmode between two doubleDirac cones. (C)WhenR>a/3, the two
doubleDirac cones open again to form two distinct bandgaps. (D)Themode shapes (out-of-plane) at theΓ point for the bandgaps
shown in (A).Γ(UP) andΓ(DOWN) indicate the upper and the lower edges of the bandgap, respectively. Note that two degenerate p-
typemodes have smaller frequency than twodegenerate d-typemodes for both bandgaps. (E)Themode shapes at theΓ point for the
bandgaps shown in (C). Thesemode shapes are inverted with respect to the ones shown in (D).
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the domainwall to investigate thewave dynamics of this tessellated system.We keep the other boundaries free.
Infigure 3(B), we show the eigenfrequencies of the supercell as a function of wavevector k//. The colormap

indicates the localization index for out-of-planewavemodes. This is defined as Lz
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entire plate volume of the supercell andVs* is the plate volume of two unit cells touching the domainwall (see
the enclosed cells infigure 3(A)with a darker solid line). The high value of the localization index in the colormap
clearly highlights the presence of localizedmodes at the domainwall (redmarkers) inside both bandgaps (PBG
andCBG). Themodes in the upper region are desolate as expected in the complete bandgap.However, the
localizedmodes in the lower region are populatedwith othermodes in this partial bandgap.

To verify the polarization of these localizedmodes, we replot figure 3(B) infigure 3(C) butwith a different
colormap indicating thewave polarization, as was used infigure 2.We clearly observe that the localizedmodes at
the domainwall are out-of-planemodes (bluemarkers). Again, the upper region shows clean out-of-plane
modes. The additional branch in this bandgap corresponds to themodes at the other ends of the supercell, and
therefore is not of any important considerations here. The lower region, however, showsweaker out-of-plane
localizedmodes, and those are intermixedwith other in-planemodes (red and yellowmarkers). This fact leads
us to understand the difference of topological wave localization between PBG andCBG. The advantage of having
theCBG is evident as it facilitates a cleanwave localization at the domainwall and eliminates the possibility of
wave leakage into othermodes. Note in passing that there is a small gap at the k//=0 point in both regions,
where there is no localization at the domainwall. As highlighted in the previous studies [26, 33], this is due to the
breakage of theC6 symmetry at the domainwall. By employing engineering tricks, such as a slowly-varying (i.e.
gradient) domainwall, one can also reduce this small gap at the k//=0 point and impart greater protection to
the topologicalmodes.

We proceed to investigate themode shapes of the aforementioned localizedmodes.We plot out-of-plane
displacements at selected frequenciesmarked as circles infigure 3(B). Figures 3(D), (E) correspond to the
frequencies inside PBG, andfigures 3(F), (G) correspond to the frequencies inside CBG, all arranged in the order
of increasing frequencies. It is clear that thesemodes are localized at the domainwall. Insets show zoomed-in
views of themode shapes onwhich the superimposed arrows indicate in-plane time-averagedmechanical
energyflux (I vj ij js= - , whereσij and vj are stress tensor and velocity vector, respectively) over a harmonic
cycle. It is evident that thesemodes have spin characteristics.More specifically, infigures 3(D), (F) that
correspond to the cyanmarkers infigure 3(B), we observe clockwise spins. Infigures 3(E), (G) (corresponding to
the greenmarkers in figure 3(B)), wewitness counterclockwise spins (see the lattices with smallerR for clearer
visualization). As the time-reversal symmetry is intact in our system, it is obvious that wewill have exactly the
opposite spins at these frequencies for a negative wavevector k//. Therefore, judging from the group velocity,

Figure 3.Emergence of topologicalmodes at the domainwall. (A)A supercellmade by placing two topologically distinct lattices
adjacently at the domainwall. (B)Eigenfrequencies of the supercell versus k//, thewavevector parallel to the domainwall. The
colormap indicates the localization index (Lz). Higher the value it has, themore localized are the out-of-planemodes at the domain
wall. The upper region (i.e. CBG) shows clear localizedmodes. The lower region (PBG) also shows localizedmodes, but those are
mixedwith other extendedmodes. (C)The same eigenfrequencies diagram, butwith a different colormap to show the polarization of
platemodes. It denotes 1 (0) for out-of-plane (in-plane) platemodes. (D)–(G) Localized out-of-planemode shapes at some selected
frequencies inside PBG andCBG (marked by circles in (B)). The arrows indicate the time-averagedmechanical energyflux to confirm
their spin nature.
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i.e. the slope of the dispersion branch at the green circles infigure 3(B), we expect that the counterclockwise spin
propagates along the domainwall towards positive wavevector, while the clockwise spin propagates in the
opposite direction.Wewill look for these spins in the experimental results later.

3.3. Steady-state transmission
Building from this numerical result, we experimentally verify the existence of topologicalmodes at the domain
wall for both PBG andCBG regions. Infigure 4, we show the evolution of steady-state transmission plots on the
plate (seemovie 2 formore plots is available online at stacks.iop.org/NJP/20/113036/mmedia), as we inject
vibrational energy through a piezoelectric actuator attached at the center of the domainwall and increase its
input frequency via a sweep signal. At low excitation frequencies (figures 4(A)–(C)), we observe that energy is
primarily localized at the domainwall. This waveguiding pattern detected in this low-frequency range
corresponds to the PBG (see the dispersion relationship infigures 3(B), (C)).We observe some traces of elastic
energy far away from the domainwall. This can be attributed to the nature of this PBG as it allows otherwave
modes to co-exist in the system. In addition, the smaller size of this bandgapwould generallymean higher
localization length of themodes at the domainwall, and hence, the flexural wavewould penetratemore into the
bulk. Beyond this PBG, thewave localization is lost,marking the presence of globalmodes (extended in the plate
as shown infigure 4(D)). At 7.33 kHz (figure 4(E)), thewave is highly attenuated around the point of excitation.

Remarkably, for the frequencies above this point, we again observewave localization along the domainwall
(figures 4(F)–(H)). This corresponds to the localization region in theCBG as indicated infigures 3(B), (C).We
clearly observe a persistent wave localization along the horizontal domainwall for awide range of frequencies.
Among these, the transmission at 7.70 kHz (figure 4(G)) is robust, inwhich thewave follows the entire domain
wall without any significant back-scattering around the sharp bends.

It isworth pointing out that at 7.51 and7.98 kHz (figures 4(F) and (H)), thewave back-scatters around the sharp
bends. A similar behaviorwas also observed recently in experiments on amechanical counterpart of quantumvalley
Hall effect [35], where guided topologicalwaves are back-scattered around a sharp bend for some frequencies inside
the topological bandgap.However, hereweobserve that thewave is able to pass through the left bend at a lower
frequency (figure 4(F)) and through the right bend at a higher frequency (figure 4(H)). This implies the preference of
the topologicalwave propagation aroundone bendover the other, depending on the excitation frequency in the
CBG.We explain thismechanismby the asymmetry of the twobends experiencedby the spinwaves. That is, as
marked by the circular arrows infigure 4(H), the bending angle experiencedby the counterclockwise spin that
propagates towards the right is different fromthat by the clockwise spin towards the left.Note that in this symmetry-
protected topological system,wehave intentionally broken theC6 symmetry at the domainwall, including the sharp

Figure 4.Experimentally obtained steady-state transmissionmaps atmultiple excitation frequencies of the piezoelectric actuator
located at the domainwall. Colors indicate the power spectral density calculated from themeasured out-of-plane velocity of the plate.
(A)–(C)Wave localization at the domainwall for the frequencies inside PBG. (D) and (E)Disappearance of this localization indicates
the dispersion region between PBG andCBG,where no localized topologicalmode exists at the domainwall. (F)–(H)Emergence of
wave localization at the domainwall once again indicates the region of CBG. (I)Wave transmission at a frequency aboveCBG.
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bends. Thismakes themodes less ‘protected’ (i.e. less robust), thereby resulting in the spin-dependent transmission
efficiency around thebends (see the transientwave propagation inmovie 3 for its further verification is available
online at stacks.iop.org/NJP/20/113036/mmedia).

3.4. Robustwaveguiding
Nowwedemonstrate robustwaveguiding capabilities of our systemby capturing the transientwavefieldwhen
excited at the frequencies insidePBGandCBG.Navigating the steady-state profiles observed in theprevious section,
we choose two central frequencies of excitation, 6.3 kHz (inPBG) and7.7 kHz (inCBG), and sendGaussianpulses
from thepiezoelectric actuator. Infigures 5(A)–(C), we show transientwavepropagationon theplate at three
different time steps inside PBG.Weobserve that thewave, emanating fromthe point of excitation at themiddle of the
domainwall, is effectively guided through thedomainwall.Here,we verify that a counterclockwise spinpropagates
towards the right and a clockwise spin propagates towards the left (seemovie 4 is available online at stacks.iop.org/
NJP/20/113036/mmedia).Note infigure 5(C) that there is some visible leakage into the bulk, complyingwellwith
the result from the steady-state response (figure 4(B)). Infigures 5(D)–(F), we show transientwavepropagation
insideCBG. It is evident that thiswave is alsobeing guided along the domainwallwithout any significant back-
scattering at the sharpbends (seemovie 5 is available online at stacks.iop.org/NJP/20/113036/mmedia).However,
the key difference is that there is no evident leakage into the bulkdue to thepresence ofCBG (figure 5(F)). This result
is consistentwith the supercell analysis (as shown infigure 3(B)) and the steady state response (figure 4(G)). In
appendixC,wediscuss away to quantify thewave transmission efficiency in these twocases.

4.Discussion

In this study, we have demonstrated numerically and experimentally the capability of topological waveguiding in
a plate with local resonators. By incorporating the local resonance effects in the design, we observe some novel

Figure 5.Experimentally obtained transient wavefields. (A)–(C)Velocitywavefields when aGaussian input centered at 6.3 kHz is
injected by the piezoelectric actuator in themiddle of the domainwall. (D)–(F)Wavefields for theGaussian input centered at 7.7 kHz.
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phenomena in this study. First, the low-frequency bendingmode of the bolt leads to the creation of a pair of
doubleDirac cones, thus invoking topological effects at low-frequencies. Second, it enables us to deal with
undesired in-plane platemodes, whichmakes it possible to clearly guide flexural waves along a topological
waveguide, eliminating their leakage to in-planemodes. This is highly desirable in designing efficient waveguides
for low-frequency flexural waves. In addition, we have also observed spin-dependent transmission efficiency of
our topological waveguide around sharp corners for certain frequencies inside topological bandgaps. This is an
interesting feature that can be exploited in applications, but at the same time, demands further exploration.

This simple and tunable design paves theway for a number of studies in future, especially with regard to
studying the effect of disorder in such symmetry-protected topological systems. For example, the height of the
bolts can be changed, or a nut can be attached to it, in order to introduce disorder in the system (see appendixD
for a few examples). It is remarkable that even though a degree of disorder exists in the current setup in terms of
bolt torques and plate threads, which in turn can change the effective coupling, we are still able to guide stress
waves robustly. This is a hallmark of topologicalmechanical systems.
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AppendixA. Geometrical details of the bolts

Wemodel the bolts by assuming a uniformdiameter along their shank and threaded areas as shown infigure A1.
We take the height h of the bolt above the plate as 8.5 mm (measured nominal value), which is dictated by the
length of the thread and the applied torque to the bolt during the assembly process.

Figure A1.Bolt geometry used for numerical simulations.
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Figure B1. Scaling of dispersion curves. (A)The ‘full contact’model, inwhich the plate and the bolt are rigidly connected throughout
the entire contact area (whole thickness of the plate). (B) and (C)Dispersion curves for thismodel in configurationswith R a0.8 3=
and R a1.1 3= , respectively. (D)The ‘reduced contact’model, inwhich the plate and the bolt are connected only through a limited
area (a fraction of thickness of the plate). (E) and (F)The corresponding dispersion curves.
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Appendix B.Modeling of the bolt-plate contact

Wefirstmodel the bolt-plate contact using the simplest approach, i.e. assuming a rigid connection at the entire
contact area between them (see figure B1(A)). The resulting dispersion is plotted infigures B1(B), (C) for the
cases withR=0.8a/3 andR=1.1a/3, respectively. The colormap indicates the polarization of platemodes as
discussed in themain text. Thoughwe find the existence of topological bandgap, the dispersion bands are
generally up-shifted in comparison to the experimental observations (see steady-state transmission inmovie 2).
Thismakes sense because by assuming this perfectly rigid connection, we overestimate the resulting out-of-
plane stiffness that comes from the threaded contact between the bolt and the plate. Therefore it leads us to scale
down the contact area as shown infigure B1(D).We introduce a tiny cut in the plate tcut=0.15 mm, from the
top and the bottom as shown, to separate some areas of the plate from the bolt, and thereforemaintain an
effective thickness t t0.5eff = at the contact. In this way, the resulting dispersion bands (see figures B1(D)–(F))
explain the experimentally observedwave transmission to a reasonable degree. Note that a bettermatch can be
achieved if wemodel the thread connection between the bolt and plate with a greater detail. Nonetheless, our
simplemodel with a reduced contact area captures the effective contact stiffness reasonably well, thus
elucidating the nature of bandgaps and topological localization in our bolted plate system.

AppendixC.Wave transmission efficiency quantification

In this section, we show one of theways to examine the efficiency of topological waveguiding. Our analysis is
based on the postulation that while thewave is guided along the domainwall, one can treat it as a 1Dwave.
Therefore, we first extract velocity time-history of all the points along the domainwall for the transient results
shown infigure 5.We then take only themaximumamplitudes in these time-history profiles and plot them
along the 1Dwave path infigure C1.We observe a highwave amplitude at the center of the path, which
corresponds to the excitation point in the plate. The injected excitation pulse is then transmitted to both sides,
the left and the right, along the domainwall.We observe a gradual decay of amplitude before thewave reaches
the bends. This can be attributed to the dispersion of theGaussianwave packet. Remarkably, this trend does not
change drastically as thewave passes through the left and the right bends. This indicates an efficient wave
transmission along the topological waveguide. However, one should be aware of the drawbacks of thismethod of
calculating the transmission. First, it accounts for thewave energy reaching at the end of the domainwall
(indicated as ‘top’ or ‘bottom’ infigure C1) directly from the center, without passing through the bends. As a
result, the velocities extracted infigureC1would not accurately represent thewave transmission solely through a
topological waveguide. Also, thismethod produces afluctuating profile of velocities, depending on the location
of velocitymeasurements. This is consistent with the fact that wewitness such spot-by-spot variations of velocity
amplitudes in the transient response of the plate as seen inmovies 4 and 5. Despite these drawbacks, the trends
shown infigureC1 are evident enough to demonstrate the efficient wave transmission along the bent paths.We
also note in passing that the authors’ previous studies have numerically shown the clear distinctions between
topological and trivial waveguiding using a uniformplatformof dial-in topologicalmetamaterials [17].

FigureC1.Quantification ofwave transmission efficiency along the domainwall. (A)Maximumvelocities attained at discrete points
along the domainwall over time, for the case of PBG as shown infigures 5(A)–(C). Note that the x-axis describes the domainwall,
highlighting the location of two bends and the center of the plate. (B)The same for the case of CBG as shown in figures 5(D)–(F).
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AppendixD. Tuning dispersion by bolt height

In this section, we shownumerically some exemplary cases to tune the plate dispersion by changing the height h
of the bolts. InfigureD1, we show the dispersion curves for the case withR=a/3 for a number of bolt heights.
We observe that the bolt height primarily influences the bending resonance of the bolts, and therefore affects the
onset of the locally resonant bandgap for in-plane platemodes (in red). However, by closely looking in the
vicinity of the doubleDirac cone for out-of-plane platemodes (in blue), we notice a slight change in thesemodes
aswell. Our current setupwith the bolt height as 8.5 mm (figureD1(C)) is particularly unique as it shows the
locally resonant bandgap for in-planemodes and the doubleDirac cones for out-of-plane platemodes in the
similar frequency range. This facilitates the emergence of a complete bandgap for all the platemodes as shown in
themain text.Moreover, the emergence of two separate doubleDirac cones in the vicinity of bolt bending
resonances is also remarkable. Therefore, we see that such a dependence of dispersionmodes on the bolt height
can be further utilized to tune the system.

References

[1] HasanMZ andKaneCL 2010Colloquium: Topological insulatorsRev.Mod. Phys. 82 3045
[2] QiX-L andZhang S-C 2011Topological insulators and superconductorsRev.Mod. Phys. 83 1057
[3] Lu L, Joannopoulos JD and SoljačićM2014Topological photonicsNat. Photon. 8 821
[4] YangZ et al 2015Topological acoustics Phys. Rev. Lett. 114 114301
[5] HeC et al 2016Acoustic topological insulator and robust one-way sound transportNat. Phys. 12 1124
[6] Fleury R, KhanikaevAB andAlùA 2016 Floquet topological insulators for soundNat. Commun. 7 11744
[7] ZhangZ, TianY, Cheng Y, LiuX andChristensen J 2017 Experimental verification of acoustic pseudospinmultipoles in a symmetry-

broken snowflakelike topological insulatorPhys. Rev.B 96 241306
[8] Nash LM et al 2015Topologicalmechanics of gyroscopicmetamaterials Proc. Natl Acad. Sci. 112 14495
[9] WangP, Lu L andBertoldi K 2015Topological phononic crystals with one-way elastic edgewaves Phys. Rev. Lett. 115 104302
[10] WangY-T, Luan P-G andZhang S 2015Coriolis force induced topological order for classicalmechanical vibrationsNew J. Phys. 17

073031
[11] Chaunsali R, Li F andYang J 2016 Stress wave isolation by purelymechanical topological phononic crystals Sci. Rep. 6 30662
[12] SüsstrunkR andHuber SD2015Observation of phononic helical edge states in amechanical topological insulator Science 349 47
[13] Pal RK, SchaefferM andRuzzeneM2016Helical edge states and topological phase transitions in phononic systems using bi-layered

lattices J. Appl. Phys. 119 084305
[14] KariyadoT andHatsugai Y 2016Manipulation ofDirac cones inmechanical graphene Sci. Rep. 5 18107
[15] Chaunsali R, KimE, Thakkar A, Kevrekidis PG andYang J 2017Demonstrating an in situ topological band transition in cylindrical

granular chainsPhys. Rev. Lett. 119 024301
[16] Vila J, Pal RK andRuzzeneM2017Observation of topological valleymodes in an elastic hexagonal latticePhys. Rev.B 96 134307
[17] WuY,Chaunsali R, YasudaH, YuK andYang J 2018Dial-in topologicalmetamaterials based on bistable stewart platform Sci. Rep.

8 112
[18] Liu T-Wand Semperlotti F 2018Experimental evidence of robust acoustic valleyHall edge states in a topological elastic waveguide

arXiv:1803.04910

FigureD1.Tuning dispersion by bolt height. (A)–(D)The configurations (R=a/3)with bolt height h=27.5, 19.5, 8.5, and 5 mm,
respectively.

11

New J. Phys. 20 (2018) 113036 RChaunsali et al

https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1103/PhysRevLett.114.114301
https://doi.org/10.1038/nphys3867
https://doi.org/10.1038/ncomms11744
https://doi.org/10.1103/PhysRevB.96.241306
https://doi.org/10.1073/pnas.1507413112
https://doi.org/10.1103/PhysRevLett.115.104302
https://doi.org/10.1088/1367-2630/17/7/073031
https://doi.org/10.1088/1367-2630/17/7/073031
https://doi.org/10.1038/srep30662
https://doi.org/10.1126/science.aab0239
https://doi.org/10.1063/1.4942357
https://doi.org/10.1038/srep18107
https://doi.org/10.1103/PhysRevLett.119.024301
https://doi.org/10.1103/PhysRevB.96.134307
https://doi.org/10.1038/s41598-017-18410-x
http://arxiv.org/abs/1803.04910


[19] Zheng L-Y, Theocharis G, Tournat V andGusevV 2018Quasitopological rotational waves inmechanical granular graphene Phys. Rev.
B 97 060101

[20] Huber SD2016TopologicalmechanicsNat. Phys. 12 621
[21] Mousavi SH, Khanikaev AB andWangZ 2015Topologically protected elastic waves in phononicmetamaterialsNat. Commun. 6 8682
[22] MiniaciM, Pal RK,Morvan B andRuzzeneM2017 Experimental observation of topologically protected helical edgemodes in

patterned elastic plates Phys. Rev.X 8 031074
[23] Brendel C, PeanoV, PainterO J andMarquardt F 2017Pseudomagnetic fields for sound at the nanoscale Proc. Natl Acad. Sci. 114

E3390
[24] TorrentD,MayouD and Sánchez-Dehesa J 2013 Elastic analog of graphene: Dirac cones and edge states for flexural waves in thin plates

Phys. Rev.B 87 115143
[25] Pal RK andRuzzeneM2017 Edgewaves in plates with resonators: an elastic analogue of the quantumvalleyHall effectNew J. Phys. 19

025001
[26] Chaunsali R, ChenC-WandYang J 2018 Subwavelength and directional control offlexural waves in zone-folding induced topological

platesPhys. Rev.B 97 054307
[27] Jin Y, TorrentD andDjafari-Rouhani B 2018Robustness of conventional and topologically protected edge states in phononic crystal

platesPhys. Rev.B 98 054307
[28] Yves S, Fleury R, Lemoult F, FinkMand LeroseyG 2017Crystallinemetamaterials for topological properties at subwavelength scales

Nat. Commun. 8 16023
[29] Yves S, Fleury R, Lemoult F, FinkMand LeroseyG 2017Topological acoustic polaritons: robust soundmanipulation at the

subwavelength scaleNew J. Phys. 19 075003
[30] Chen J-J, Huo S-Y, Geng Z-G,HuangH-B andZhuX-F 2017Topological valley transport of plate-modewaves in a homogenous thin

plate with periodic stubbed surfaceAIPAdv. 7 115215
[31] FoehrA, Bilal OR,Huber SD andDaraioC 2018 Spiral-based phononic plates fromwave beaming to topological insulators Phys. Rev.

Lett. 120 205501
[32] Liu et al 2000 Locally resonant sonicmaterials Science 289 1734
[33] WuL-H andHuX2015 Scheme for achieving a topological photonic crystal by using dielectricmaterial Phys. Rev. Lett. 114 223901
[34] SakodaK 2012DoubleDirac cones in triangular-latticemetamaterialsOpt. Express 20 9925
[35] QianK, ApigoD J, ProdanC, Barlas Y and Prodan E 2018Topology of the valley–Chern effect Phys. Rev.B 98 155138

12

New J. Phys. 20 (2018) 113036 RChaunsali et al

https://doi.org/10.1103/PhysRevB.97.060101
https://doi.org/10.1038/nphys3801
https://doi.org/10.1038/ncomms9682
https://doi.org/10.1103/PhysRevX.8.031074
https://doi.org/10.1073/pnas.1615503114
https://doi.org/10.1073/pnas.1615503114
https://doi.org/10.1103/PhysRevB.87.115143
https://doi.org/10.1088/1367-2630/aa56a2
https://doi.org/10.1088/1367-2630/aa56a2
https://doi.org/10.1103/PhysRevB.97.054307
https://doi.org/10.1103/PhysRevB.98.054307
https://doi.org/10.1038/ncomms16023
https://doi.org/10.1088/1367-2630/aa66f8
https://doi.org/10.1063/1.5006010
https://doi.org/10.1103/PhysRevLett.120.205501
https://doi.org/10.1126/science.289.5485.1734
https://doi.org/10.1103/PhysRevLett.114.223901
https://doi.org/10.1364/OE.20.009925
https://doi.org/10.1103/PhysRevB.98.155138

	1. Introduction
	2. The locally resonant topological plate
	2.1. Design and fabrication
	2.2. Experimental measurements and processing
	2.3. Numerical modeling

	3. Results
	3.1. Unit-cell dispersion and band inversion
	3.2. Emergence of topological interface state
	3.3. Steady-state transmission
	3.4. Robust waveguiding

	4. Discussion
	Acknowledgments
	Appendix A.
	Appendix B.
	Appendix C.
	Appendix D.
	References



