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Linear and nonlinear dynamics of isospectral granular chains
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2Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515
(Dated: February 1, 2017)

We study the dynamics of isospectral granular chains that are highly tunable due to the nonlinear Hertz con-
tact law interaction between the granular particles. The system dynamics can thus be tuned easily from being
linear to strongly nonlinear by adjusting the initial compression applied to the chain. In particular, we intro-
duce both discrete and continuous spectral transformation schemes to generate a family of granular chains that
are isospectral in their linear limit. Inspired by the principle of supersymmetry in quantum systems, we also
introduce a methodology to add or remove certain eigenfrequencies, and we demonstrate numerically that the
corresponding physical system can be constructed in the setting of one-dimensional granular crystals. In the
linear regime, we highlight the similarities in the elastic wave transmission characteristics of such isospectral
systems, and emphasize that the presented mathematical framework allows one to suitably tailor the wave trans-
mission through a general class of granular chains, both ordered and disordered. Moreover, we show how the
dynamic response of these structures deviates from its linear limit as we introduce Hertzian nonlinearity in the
chain and how nonlinearity breaks the notion of linear isospectrality.

PACS numbers: 45.70.-n 05.45.-a 46.40.Cd
Keywords: isospectral systems, supersymmetry, granular chains

I. INTRODUCTION

The science of manipulating stress waves propagating through discrete media has attracted significant research interest in
recent years. A granular crystal can be such a medium, which is a periodic structure composed of discrete particles that interact
elastically as per Hertz’s contact law [1–3]. At a fundamental level, the periodicity in granular crystals causes Bragg scattering,
which allows them to filter a range of elastic waves, thereby forming frequency band structures [4]. Furthermore, such structures
are special in the sense that the system dynamics can be tuned from linear to highly nonlinear regimes, simply by changing
the initial static compression applied externally [2]. Thus, due to the tunable interplay of nonlinearity and discreteness, these
systems have become popular testbeds for demonstrating a wide range of nonlinear wave phenomena, for example, solitary
waves [1–3, 5, 6], shock waves [7–9], discrete breathers [1, 10, 11], energy cascades [12], and nanoptera [13, 14].

By leveraging this remarkable tunability, we direct our efforts to study isospectral systems based on granular media. Isospec-
tral systems refer to a family of systems with identical spectra. In mechanical settings, these isospectral systems would represent
a group of structures with identical eigenfrequencies. The existence of isospectral systems is closely linked to a non-uniqueness
problem, which was articulately posed as “Can we hear the shape of a drum?” in the famous paper of M. Kac [15]. The non-
uniqueness lies in the possibility of constructing multiple structures (shapes) from a given set of eigenfrequencies (hearing) [16].
In the past, this avenue has been primarily investigated as an inverse problem [19–21]. It is only recent that such systems, in con-
junction with the systems inspired by a closely related principle of supersymmetry [22], have gained renewed interest in a broad
spectrum of research communities, especially in the context of designing strategic architectures to control wave transmission
characteristics. For example, transparent interfaces [23], mode converters [24], reflection-less bent waveguides [25], and super-
symmetric optical structures [26] have been proposed. These concepts have also driven fundamental studies on Bloch waves in
defective [27] and disordered [28] lattices. However, wave transmission characteristics in mechanical isospectral systems have
not been systematically explored. Moreover, the effect of nonlinearity in the dynamics of initially isospectral systems is also a
fundamental question to be answered.

Owing to the fact that a tunable granular system can be used as a fertile testbed to explore both of these issues, our aim in
the present work is to harness the wealth of mathematical schemes, such as discrete and continuous spectral transformations,
to generate a family of isospectral granular chains. In the linear regime, we evaluate and compare elastic wave transmission
characteristics of these systems. Inspired by the principle of supersymmetry, we extend our mathematical framework to construct
a class of granular chains that have specific eigenfrequencies added or removed. In this way, we show that the entire framework
gives us remarkable freedom in constructing a general class of granular chains with desired wave transmission characteristics
in the linear regime. In the nonlinear regime, we focus on studying the versatile dynamics of isospectral granular chains, and
discuss how the dynamics deviates from the linear expectation of isospectrality with the extent of nonlinearity in the medium.

∗ The first two authors contributed equally.
† kevrekid@gmail.com
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2

This manuscript is structured as follows: in Section II, we present a mathematical model of granular systems and formulate
their equations of motion. We then linearize the system, which we use for constructing isospectral chains. In Section III, we
explain spectral transformation schemes to get isospectral spring-mass systems. In Section IV, we discuss the possibility of
constructing a family of isospectral systems in the setting of granular chains, such that their linearized systems share the same
eigenfrequencies. Additionally, we introduce a strategy for removing or adding eigenfrequencies from the linearized system of a
granular chain. In Section V, both linear and nonlinear dynamics of the family of such granular chains is studied and compared,
while in section VI we summarize our findings and present our conclusions, as well as a number of directions for future study.

II. THEORETICAL SETUP

In this work we are interested in granular chains consisting of spherical beads that interact through the Hertzian contact law
(i.e., F ∼ d3/2, where F and d are the beads’ compressive force and displacement, respectively) [29]. In particular, we consider
a granular chain, denoted by (NS-1), that has n spherical beads. Suppose the chain is bounded by half-spaces from both ends,
and the chain starts with precompression between contacting beads and between the end bead and the half-space as well. For
simplicity, we assume that all beads and the half-spaces are made from the same material, so that they share the same density
ρ, Young’s modulus E, and Poisson’s ratio ν. However, the beads can have different radii (r1, r2, ..., rn), which will lead to
different masses (m1,m2, ...,mn) and different inter-particle contact stiffness coefficients (k1, k2, ..., kn+1), as shown below:

mj =
4

3
πρr3

j , 1 ≤ j ≤ n (1)

k1 =
4

3
E∗
√
r1, (2)

kj =
4

3
E∗

√
rj−1rj
rj−1 + rj

, 2 ≤ j ≤ n (3)

kn+1 =
4

3
E∗
√
rn, (4)

where E∗ is 2E
3(1−ν2) . Note that mj’s and kj’s are solely functions of the radii, provided that the material of the beads do not

change.
Then the equations of motion for the granular chain can be written as:

mj z̈j = kj(dj + zj−1 − zj)p+ − kj+1(dj+1 + zj − zj+1)p+, 1 ≤ j ≤ n (5)

where z0 = zn+1 = 0, p = 3
2 due to the Hertzian contact, dj denotes the precompression between (j − 1)-th and j-th beads,

zj is the displacement of the j-th bead, and (a)+ := max(a, 0).
If z1 = z2 = ... = zn = 0 is a steady-state solution to the system (i.e., zj is measured with respect to its equilibrium position),

the precompression should satisfy

k1d
p
1 = k2d

p
2 = ... = kn+1d

p
n+1 = C,

where C is a constant controlling the static precompression applied to the granular chain. To study the linear limit of the system,
we assume the displacements zj � dj and linearize the equations (5) as:

mj z̈j = Kj(zj−1 − zj)−Kj+1(zj − zj+1), 1 ≤ j ≤ n (6)

where z0 = zn+1 = 0 and Kj = pdp−1
j kj = pk

1/p
j C(p−1)/p for 1 ≤ j ≤ n+ 1.

We notice that this set of equations actually describes a (linear) spring-mass system, which we denote as (S-1), with masses
(m1,m2, ...,mn) and springs (K1,K2, ...,Kn+1). The equations (6) can also be written using matrices as

M z̈ +Bz = 0 (7)

where M =

 m1 0 0 ... 0
0 m2 0 ... 0
... ... ... ... ...
0 0 ... 0 mn

 and B =

 K1 +K2 −K2 0 ... 0
−K2 K2 +K3 −K3 ... 0
... ... ... ... ...
0 0 ... −Kn Kn +Kn+1

.

It is known that isospectral spring-mass systems can be constructed such that they bear the same natural frequencies as those
in (S-1) [19]. In the coming Section III, we briefly review this approach and upgrade it by introducing a continuous isospectral
transformation. Then we take a further step to tailor and apply the enhanced method for constructing isospectral granular chains,
which is described in Section IV.
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3

III. ISOSPECTRAL SPRING-MASS SYSTEM

To find the eigenfrequencies of the spring-mass system (S-1), which is described by (6), we set zj = Zje
iωt and λ = ω2 in

equation (7) and solve the eigenvalue system

(B − λM)Z = 0.

Let G = M1/2 and H = G−1BG−1, then the eigenvalue problem yields

(H − λI)(GZ) = 0,

where the eigenvalues λ of H give the eigenfrequencies (ω = ±
√
λ) of the spring-mass system. Here we call H the associated

matrix of the spring-mass system (S-1), and the following remarks explain the relationships between a spring-mass system and
its associated matrix.

Remark 1. If a spring-mass system has positive masses and spring constants, i.e., mi > 0 for 1 ≤ i ≤ n and Kj > 0 for
1 ≤ j ≤ n+ 1, then its associated matrix H satisfies the following conditions:

(A1) H is a real symmetric tridiagonal matrix;

(A2) all entries on the main diagonal are real, and all off-diagonal entries are negative;

(A3) H is positive definite. (See Appendix for proof)

In particular, for the linearized system of a granular chain system, its associated matrix H satisfies all aforementioned condi-
tions.

Remark 2. If H̃ is a n × n matrix and it satisfies conditions (A1)–(A3), then there exists a family of spring-mass systems with
positive parameters (α, β) such that

• each spring-mass system in this family has positive masses (m̃1, m̃2, ..., m̃n) and spring constants (K̃1, K̃2, ..., K̃n+1);

• the associated matrix of each spring-mass system in this family is H̃ .

In particular, if we additionally require that K̃1√
m̃1

and K̃n+1√
m̃n

are fixed in the spring-mass system, then there is only one spring-

mass system in the family and it satisfies (α, β) = ( K̃1√
m̃1
, K̃n+1√

m̃n
). (See Appendix for proof)

Remark 3. Let TA,n be the space of n × n matrices that satisfy conditions (A1)–(A3). Let Lα,β,n denote the space of spring-
mass systems with masses and springs satisfying K1√

m1
= α and Kn+1√

mn
= β. If we define a function by mapping a spring-mass

system in Lα,β,n to its associated matrix, then it will be a smooth bijective function connecting Lα,β,n and TA,n.

As these remarks suggest, it is sufficient to consider the matrices in TA,n for investigating the eigenfrequencies of spring-mass
systems. That is to say, we will be able to obtain isospectral spring-mass systems if we can find some transformation that maps
within TA,n (i.e., retains the conditions (A1)–(A3)) and keeps the eigenvalues invariant. For isospectral flow that maps the matrix
H to H̃ , here we consider the following approaches:

• QR decomposition: QR = H − µIn, H̃ = RQ+ µIn.

• Cholesky decomposition: L1L
T
1 = H − µIn, H1 = LT1 L1 + µIn, L2L

T
2 = H1 − µIn, H̃ = LT2 L2 + µIn.

We perform the process twice here since a single application may not yield an “acceptable” H̃ for some choices of µ.
Nevertheless, repeating the process a second time can be effectively considered as a QR decomposition with Q = L1L

−T
2

and R = LT2 L
T
1 and hence should work for generic values of µ.

• Continuous isospectral flow such as Toda flow [17, 18].

While any of these approaches will give us an isospectral transformation (see e.g. [19] for details about the approaches using QR
decomposition or Cholesky decomposition), we will place special emphasis on continuous isospectral flow in this study. Despite
the generality that the continuous approach offers, there are also practical reasons for this choice: The first two transformation
schemes are discrete in the sense that a family of isospectral systems is not evolved smoothly by varying a parameter in space.
That is, though these schemes have been used for constructing isospectral or supersymmetric systems in the past [19, 24], in
mechanical settings, we observe that these approaches often result in systems with extremely high contrast (variations) in system
parameters. This makes it very difficult to practically realize such systems. Therefore, we adopt the continuous isospectral
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flow, in which we can control one (or more) parameter(s) and generate the isospectral systems without incurring sharp contrasts
in system parameters. This gives us extra degrees of freedom in terms of smoothly controlling the parameters of the resulting
mechanical systems.

Let TΛ be the space of all n× n, real, symmetric, tridiagonal matrices with negative subdiagonals and spectrum Λ = {λ1 >
λ2 > ... > λn > 0}. Since all eigenvalues in the spectrum are positive, all the matrices in this space are positive definite
thus have positive main diagonals, i.e., TΛ ⊆ TA,n. On the other hand, it has been shown in [18] that the spectrum of a real,
symmetric, tridiagonal matrix with negative subdiagonals must be simple (this implies that any spring-mass system should have
distinct eigenfrequencies) thus TA,n ⊆

⋃
Λ TΛ. That is to say, TΛ is exactly the collection of matrices that bear the spectrum

Λ in TA,n. In the following Lemma, we review the topology of TΛ described in [18, 30] which naturally defines a continuous
isospectral flow.

Lemma 1. The space TΛ is diffeomorphic to Sn−1
>0 := {x ∈ Rn|

∑n
i=1 x

2
i = 1, xi > 0, 1 ≤ i ≤ n}, i.e., there exists a bijective

and smooth map φ : TΛ → Sn−1
>0 .

Proof. For H ∈ TΛ, there exists a unique U such that H = UDUT and UUT = UTU = In where D := diag(λ1, λ2, ..., λn)
and U1j > 0 for 1 ≤ j ≤ n. Define φ(H) := (U11, U12, ..., U1n), then it maps a matrix in TΛ to a point on the sphere Sn−1

>0 .
On the other hand, given a point x = (x1, x2, ..., xn) on the sphere Sn−1

>0 , we can find its corresponding matrix H = φ−1(x)
in the space TΛ. To be more specific, suppose U is an orthogonal matrix satisfying U1j = xj for 1 ≤ j ≤ n and there exists
some H such that H = UDUT , i.e., HU = UD. Then we have Hcolj(U) = λjcolj(U) for 1 ≤ j ≤ n and the orthogonality
of columns of U leads to the following equations:

ai =

n∑
j=1

λjU
2
ij , 1 ≤ i ≤ n (8)

bi = −

√√√√ n∑
j=1

[(λj − ai)Uij − bi−1Ui−1,j ]2, 1 ≤ j ≤ n− 1 (9)

Ui+1,j =
1

bi
[(λj − ai)Uij − bi−1Ui−1,j ], 1 ≤ j ≤ n− 1 (10)

where b0 = bn = U0j = 0 for 1 ≤ j ≤ n. By evaluating the equations in the order

a1 → b1 → U2,j → a2 → b2 → U3,j → a3 → ...→ Un,j → an,

we can obtain a unique matrix H = φ−1(x). It can be easily shown that bi 6= 0 for 1 ≤ i ≤ n−1 thus such H will always exist.

By Lemma 1, the matrices in TΛ are parametrized by the coordinates in Sn−1
>0 thus every matrix in such a space will be

accessible to us through its image point on the sphere. That is to say, by continuously moving the image point x in Sn−1
>0 we can

accordingly obtain a continuous isospectral flow of matrices in TΛ byH = φ−1(x). Also utilizing Remark 3, we have shown that
every spring-mass system will have a whole family of isospectral spring-mass systems with parameters (x1, x2, ..., xn) ∈ Sn−1

>0 .

IV. ISOSPECTRAL GRANULAR CHAINS

A. Calculation of isospectral systems

Given a granular chain (NS-1) whose linearized system is (S-1), we now consider constructing another granular chain (NS-2)
such that its linearized system (S-2) has the same eigenfrequencies as those in (S-1). In general, this is a challenging task to
achieve, because it is not always the case that a spring-mass system is the linearization of some granular chain (although we have
seen that the reverse is true) and our isospectral transformations for spring-mass systems do not necessarily map a linearized
granular chain to another linearized granular chain. To be more specific, a granular chain is determined by n free variables
(r1, r2, ..., rn) while a spring-mass systems has (2n + 1) free variables, namely (m1,m2, ...,mn) and (K1,K2, ...,Kn+1).
Since the symmetric tridiagonal matrices in the isospectral transformations have (2n − 1) non-zero elements, only (2n − 1)
degrees of freedom in isospectral spring-mass systems can be kept, as also seen in Remark 3.

To enable the construction of a granular chain from a tridiagonal matrix, we would like to extend our consideration to general-
ized forms of granular systems (Fig. 1). In particular, motivated in part by the proposals of [31], we attach a linear spring to each
bead in the granular chain and let the other end of the spring be fixed. Note that in Fig. 1, these linear springs are represented by
cylindrical beams mounted on the ground, while the Hertzian contacts among particles are denoted by inter-particle springs. We

Page 4 of 19AUTHOR SUBMITTED MANUSCRIPT - JPhysA-106601.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



5

FIG. 1: General design of the proposed isospectral granular chain. Springs represent the nonlinear Hertz contact interaction between granular
beads. Grounded cantilever beam attached to each bead provides a linear stiffness for the longitudinal direction of bead vibration.

assume that the wall-mounted springs (i.e., cylindrical beams) impose a potential to our system only in the longitudinal direction
of the chain. If the stiffness of the j-th wall-mounted spring is γj , and γj is allowed to vary for 2 ≤ j ≤ n, then the granular
chain system now has (2n − 1) degrees of freedom, and it matches the dimension of a n × n symmetric tridiagonal matrix.
Note again that we only vary particles’ radii and wall-mounted stiffness values, while keeping the elastic modulus and density
of beads (i.e., the material) fixed.

Then, the new equations of motion become:

mj z̈j = kj(dj + zj−1 − zj)p+ − kj+1(dj+1 + zj − zj+1)p+ − γjzj , 1 ≤ j ≤ n (11)

and the linearized system around the steady-state solution is:

M z̈ +Bγz = 0 (12)

where the mass matrix M remains the same while the stiffness matrix Bγ has changed its diagonal entries to Kj + Kj+1 + γj
instead of Kj +Kj+1 for 1 ≤ j ≤ n in B.

Although the system in (12) is no longer identical to that in (7) (i.e., now the beads are wall-mounted), its associated matrix
Hγ = M−1/2BγM

−1/2 = G−1BγG
−1 will again satisfy (A1)–(A3), provided γj’s are all nonnegative. Then for a matrix H̃γ

in TA,n (or TΛ), we seek a granular chain such that its linearization near the zero solution has H̃γ as its associated matrix. This
is possible because the radii and springs in the granular chain give (2n− 1) unknowns (note one of the springs, say the first one,
is fixed), and the main diagonal and subdiagonals of H̃γ also give (2n− 1) equations.

Suppose a granular chain system (NS-2) has radii (r̃1, r̃2, ..., r̃n), springs (γ1, γ̃2, γ̃3, ..., γ̃n) and precompressions
(d̃1, d̃2, ..., d̃n+1). If (NS-2) has a zero solution, then k̃1d̃

p
1 = k̃2d̃

p
2 = ... = k̃n+1d̃

p
n+1 = C where k̃j represents the stiff-

ness of elastic force between (j− 1)-th and j-th beads. This is under the assumption that the mounted springs are unstretched at
the initial compressive state of the chain. In the linearized system of (NS-2) near the zero solution, we have:

m̃j =
4

3
πρr̃3

j , 1 ≤ j ≤ n (13)

K̃1 = W (r̃1)1/3, (14)

K̃j = W (
r̃j−1r̃j
r̃j−1 + r̃j

)1/3, 2 ≤ j ≤ n (15)

K̃n+1 = W (r̃n)1/3 (16)

where W = pC1−1/p( 4
3E∗)

1/p = 3
2C

1
3 ( 4

3E∗)
2
3 .

Substituting these expressions back into H̃γ = M̃−1/2B̃γM̃
−1/2 where H̃γ is given, we obtain the equations as follows for
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r̃ = (r̃1, r̃2, ..., r̃n) and γ̃ = (γ̃2, γ̃3, ..., γ̃n):

f1 := H̃γ(1, 1)−
W ((r̃1)1/3 + ( r̃1r̃2

r̃1+r̃2
)1/3) + γ1

4
3πρr̃

3
1

(17)

fj := H̃γ(j, j)−
W ((

r̃j−1r̃j
r̃j−1+r̃j

)1/3 + (
r̃j r̃j+1

r̃j+r̃j+1
)1/3) + γ̃j

4
3πρr̃

3
j

, 2 ≤ j ≤ n− 1 (18)

fn := H̃γ(n, n)−
W ((r̃n)1/3 + ( r̃n−1r̃n

r̃n−1+r̃n
)1/3) + γ̃n

4
3πρr̃

3
n

(19)

gj := H̃γ(j, j + 1) +
W (

r̃j r̃j+1

r̃j+r̃j+1
)1/3

4
3πρ(r̃j)3/2(r̃j+1)3/2

, 1 ≤ j ≤ n− 1 (20)

Lemma 2. If (r̃1, r̃2, ..., r̃n) are positive and γ1 ≥ 0 in equations (17 - 20), then |∂(f ,g)
∂(r̃,γ̃) | 6= 0. (See Appendix for proof)

Lemma 3. Suppose H̃γ ∈ TΛ corresponds to x̃ in Sn−1
>0 and γ1 ≥ 0 in (f(r̃, γ̃, H̃γ), g(r̃, γ̃, H̃γ)) = 0, i.e., equations (17 -

20). If (f(r,γ, Hγ), g(r,γ, Hγ)) = 0 where r is a positive vector and Hγ corresponds to x in Sn−1
>0 , then for some open set

O in Sn−1
>0 containing x, there exists a unique (r̃(x̃), γ̃(x̃)) satisfying (f(r̃(x̃), γ̃(x̃), H̃γ(x̃)), g(r̃(x̃), γ̃(x̃), H̃γ(x̃))) = 0 for

x̃ ∈ O.

Proof. By Lemma 1, we write (f(r̃, γ̃, H̃γ), g(r̃, γ̃, H̃γ)) = 0 as (f(r̃, γ̃, x̃), g(r̃, γ̃, x̃)) = 0. Then, we apply Lemma 2 and
the Implicit Function Theorem.

If a granular chain (NS-1) with (r1, r2, ..., rn) and (γ1, γ2, ..., γn) gives matrix Hγ in TΛ and φ(Hγ) = x, then by Lemma
3, there exists a family of granular chains with the same eigenfrequencies in the linear limit as (NS-1). We note that r̃ obtained
here will always be positive, however γ̃ may contain negative components, which will violate the positivity of spring constants.
That is to say, though we are in general free to vary x̃ ∈ Sn−1

>0 to construct isospectral granular chains, perhaps only a part
of the values for x̃ can lead to systems with positive γ̃ such that they are physically realizable. In this work, we have chosen
our examples carefully so that they all have positive γ̃. However, it is certainly interesting to identify the precise conditions for
positive γ̃. This is an important open problem that will be deferred to future studies.

Example 1: isospectral granular chains

In Fig. 2, we show an example of finding granular chains whose linearized models have the same eigenfrequencies. Suppose
we start with a generalized granular chain system with ρ = 1, E∗ = 1 and

• radii rj = 1 for all 1 ≤ j ≤ 10,

• springs γ1 = 0 and γj = 1 for all 2 ≤ j ≤ 10,

• precompressions satisfying k1d
p
1 = k2d

p
2 = ... = k11d

p
11 = C where C = 1,

then by Lemma 1 its corresponding matrix H has the image point

x = φ(H) = (0.08415, 0.1667, 0.2451, 0.3158, 0.3743, 0.4148, 0.4291, 0.4057, 0.3295, 0.1895) ∈ S9
>0.

Then we move x along the homotopic path (ensuring that we stay on the unit sphere)

Γ1(t) =
x · (1− t) + y · t
‖x · (1− t) + y · t‖l2

where

yj =
sin( jπ11 )√∑10
j=1 sin2( jπ11 )

, 1 ≤ j ≤ n

to obtain a sequence of points {x(l)} with x(0) = x and compute the corresponding tridiagonal matrices {H(l)} in TΛ. By
construction, all these tridiagonal matrices are isospectral. Assuming ρ, γ1, and C remain the same for all systems, we use
Newton’s method to solve (17)–(20), aiming to find the granular chain with r(l) and γ(l) for given H(l) = φ−1(x(l)). If the
steps in {x(l)} are chosen small enough, Lemmas 2 and 3 tell us that r(l−1) and γ(l−1) can serve as an initial guess for the l-th
iteration in Newton’s method. In particular, the corresponding granular chain system we obtained for x(20) = y has:
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FIG. 2: Top row: radii (left panel) and springs (right panel) in granular chain systems; middle row: masses (left panel) and spring coefficients
(right panel) in the linearized systems; bottom: corresponding image points in S9

>0. In each of the panels, each line stands for a variable
in a sequence of isospectral systems. The circles in each column correspond to different variables in the same system. As x goes to y in
this example, we particularly observe that r(l)3 , r(l)5 , r(l)7 and r(l)9 are almost identical while r(l)2 , r(l)4 , r(l)6 , r(l)8 are quantitatively identical.
Similarly, γ(l)

3 , γ(l)
5 , γ(l)

7 and γ(l)
9 are close while the lines of γ(l)

2 , γ(l)
4 , γ(l)

6 and γ(l)
8 almost collide. m(l) and K(l) bear similar features since

they are functions of r(l).

• radii r(20) = (0.9421, 1.0523, 0.9493, 1.0530, 0.9493, 1.0530, 0.9493, 1.0530, 0.9491, 1.0193)

• springs γ(20) = (0, 1.6389, 0.4390, 1.6523, 0.4404, 1.6526, 0.4404, 1.6523, 0.4440, 0.6306).

In Fig. 3, we arrive at the same image point x(20) via a different path

Γ2(t) =
x+ (y − x)(3t− 2t2)

‖x+ (y − x)(3t− 2t2)‖l2

in S9
>0, finding that the corresponding granular chain system at the destination is the same as what we obtained using the first

path.
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FIG. 3: Top row: radii (left panel) and springs (right panel) in granular chain systems; middle row: masses (left panel) and spring coefficients
(right panel) in the linearized systems; bottom: corresponding image points in the space S9

>0. The meaning of the lines and circles follows
that for Fig. 2. It is shown that we arrive at the same granular chain as in Fig. 2 at y, though via a different path.

B. Frequency addition and removal

In the previous section, we talked about the process of constructing a family of granular chain systems from an initial one,
while keeping identical all eigenfrequencies of its linearized model. In this section, we will discuss the possibility of constructing
granular chain systems if we add or remove eigenvalues from the spectrum of its linearized model.

Suppose now we have a granular chain system with radii {rj}1≤j≤n and local stiffnesses {γj}2≤j≤n. After linearizing the
system around the zero solution, we obtain a tridiagonal matrix H whose spectrum is denoted by Λ. In order to directly remove
an eigenvalue λk of H from Λ, we would like to make H(n− 1, n) = H(n, n− 1) = 0 and H(n, n) = λk where λk ∈ Λ. This
enables us to decouple one eigenvalue from the system, in the sense that once the n-th column and n-th row are truncated from
H matrix, we can remove that eigenvalue without affecting the remaining ones. Since the matrix H represents the linearization
of a granular chain consisting of spherical beads and local potentials, then H(n − 1, n) → 0 implies rn → ∞ or rn−1 → ∞.
Since rn−1 →∞ also leads to H(n− 2, n− 1) = H(n− 1, n− 2)→ 0, this choice will not fit the situation of only separating
the eigenvalue λk. On the other hand, if we set rn →∞ and γn → λk

4
3πρr

3
n, then rnrn−1

rn+rn−1
→ rn−1 and H(n, n)→ λk. As a

result, we will have H →
(
Hn−1 0

0 λk

)
where Hn−1 is a (n− 1)× (n− 1) matrix in TΛ\λk

.
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Proposition 1. If there is a sequence of matrices {H(l)}l∈N converging to
(
Hn−1 0

0 λk

)
in TΛ and each of the matrix H(l)

corresponds to a granular chain model with {r(l)
j }1≤j≤n and {γ(l)

j }2≤j≤n, then liml→∞ r
(l)
n = ∞ and liml→∞

γ(l)
n

(r
(l)
n )3

=

λk
4
3πρ.

In fact, this result makes intuitive sense via the interpretation that the n-th bead will gradually become harder and harder to move
as rn → ∞ and γn → ∞ and effectively become a “wall” in the end. This makes the n-th bead decoupled from the chain with
its own eigenfrequency λ while the other (n − 1) beads will actually represent a shorter granular chain that corresponds to the
matrix Hn−1. In order to find a sequence of matrices described in Proposition 1, we consider the behavior of their image points
in Sn−1

>0 and state the following proposition, which we have numerically examined though a proof is not given here.

Proposition 2. Suppose a sequence of matrices {H(l)}l∈N is in TΛ where Λ = {λ1 > λ2 > ... > λn > 0} and their image
points in Sn−1

>0 is x(l) = (x
(l)
1 , x

(l)
2 , ..., x

(l)
n ). If liml→∞ x

(l)
k = 0 and liml→∞ x

(l)
j = yj > 0 for j 6= k, then liml→∞H(l) =(

Hn−1 0
0 λk

)
where Hn−1 ∈ TΛ\λk

.

With the results stated above, we introduce the following algorithm to find a family of granular chain systems with the eigenvalues
of their linearized models gradually removed:

1. Start from a granular chain with {rj}1≤j≤n and {γj}2≤j≤n, whose linearization around the zero solution corresponds to
matrixH . Suppose the spectrumH is Λ = {λ1 > λ2 > ... > λn > 0} and its image point in Sn−1

>0 is x = (x1, x2, ..., xn).

2. Pick a sequence of points x(l) = (x
(l)
1 , x

(l)
2 , ..., x

(l)
n ) in Sn−1

>0 such that liml→∞ x
(l)
k = 0 and liml→∞ x

(l)
j = yj > 0 for

j 6= k. For the numerical computation to run smoothly, we require that xl is chosen close enough to xl−1 for each l in the
sequence.

3. For each x(l), by Lemma 3, we can use numerical methods such as Newton’s method to compute the granular chain
with {r(l)

j }1≤j≤n and {γ(l)
j }2≤j≤n. To be more specific, we apply Newton’s method to the equations (17 - 20) using

{r(l)
j }1≤j≤n and {γ(l)

j }2≤j≤n as variables. According to Lemma 3, if we choose x(l) close enough to x(l−1), then by

continuity {r(l−1)
j }1≤j≤n and {γ(l−1)

j }2≤j≤n should be a good guess for the solution and the Newton’s method will have
a second-order convergence.

4. When x(l)
k is close enough to zero or r(l)

n and γ(l)
n are large enough, we drop the n-th bead of the chain so that the length

of the chain decreases by 1.

To be more specific, we find the matrix Hn−1 ∈ TΛ\λk
such that it corresponds to (y1, y2, ..., yk−1, yk+1, ..., yn) in Sn−2

>0 .
Then we solve for a granular chain of length n−1 fromHn−1 while using {r(l)

j }1≤j≤n−1 and {γ(l)
j }2≤j≤n−1 as an initial

guess.

By repeating the steps 1-4, we can remove eigenvalues from the spectrum Λ one by one in any order and decrease the length
of the chain accordingly.

Reversing the removal process above, we can also add eigenvalues to the spectrum and increase the length of the granular
chain, as shown in the following algorithm:

1. Start from a granular chain with {rj}1≤j≤n and {γj}2≤j≤n, whose linearization around the zero solution corresponds to
matrixH . Suppose the spectrumH is Λ = {λ1 > λ2 > ... > λn > 0} and its image point in Sn−1

>0 is x = (x1, x2, ..., xn).

2. For λ0 ∈ (λk, λk−1) (it is also okay if λ0 > λ1 or λ0 < λn), we add it to the spectrum Λ and put it right between λk−1

and λk. The newly obtained spectrum is denoted by Λ̃. We extend x to x̃ = (x̃1, ..., x̃k−1, x0, x̃k+1, ..., x̃n+1) where
0 < x0 � 1 and find its associated matrix H̃ in TΛ̃.

3. We change r to r̃ = (r1, ..., rn, r0) and change γ to γ̃ = (γ2, ..., γn, γ0) where r0 � 1 and γ0 = λ0
4
3ρπr

3
0 . Using r̃ and

γ̃ as initial guess, we solve for a granular chain of length n+ 1 from H̃ .
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Example 2: removing an eigenfrequency

In Fig. 4, we show an example of decoupling an eigenfrequency from the linear counterpart of a granular chain system. Here
we start from the granular chain system with

• radii rj = 1 for 1 ≤ j ≤ 6

• springs γ1 = 0 and γj = 1 for all 2 ≤ j ≤ 6

• precompressions satisfying k1d
p
1 = k2d

p
2 = ... = k7d

p
7 = C = 1,

and its corresponding matrix in TΛ has

• spectrum Λ : (1.5483, 1.3549, 1.0702, 0.7542, 0.4781, 0.2987)

• image in S5
>0: x = (0.1649, 0.3221, 0.4542, 0.5327, 0.5141, 0.3386).

Setting γ1 fixed and letting x2 → 0, we remove λ2 = 1.3549 from the spectrum Λ while keeping all the other eigenvalues. In
the process of removing eigenvalue λ2, at first we pick a path in the space S5

>0 to make x2 → 0, letting xj for j 6= 2 gradually
become the same, as reflected in the first 18 steps in Fig. 4. At the same time, the pair (r6, γ6) grow to∞ and then the last bead
of the chain is dropped at the 19-th step, after which the length of the granular chain becomes 5 and only 5 eigenfrequencies
remain. Although γ(19)

2 < 0 is an unphysical value, the ability of moving x in S4
>0 allows us to arrive at a system with all γj

being nonnegative in the end. In particular, the granular chain at the destination (38-th step) has the following parameters:

• r̃ = (0.9839, 0.9295, 0.9672, 1.1627, 1.2108)

• γ̃ = (0, 0.6050, 0.6792, 2.0333, 1.0924).
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FIG. 4: Top row: radii (left panel) and springs (right panel) in granular chain systems; middle row: masses (left panel) and spring coefficients
(right panel) in the linearized systems; bottom: image points (left panel) in the space Sn−1

>0 and the spectrum (right panel). Again, each line
with circles stands for a parameter in different isospectral systems. The circles in each column correspond to different parameters in the same
system. At step 0, the granular chain consists of 6 beads while there are only 5 after step 19, which is indicated by the vertical dotted line. It
can be clearly seen that we have kept all the eigenvalues except the second largest one. We notice that γ(l)

2 is negative for 6 < l < 24, yet it
becomes positive for larger (and smaller) values of l, corresponding in the latter cases to physically relevant systems.

In pratical, if one wants all γj to stay nonnegative at every step, then x(18) can be replaced by
(x

(38)
1 , x

(38)
2 , x

(38)
3 , x

(38)
4 , x

(38)
5 , x

(38)
6 ) with x

(38)
2 ≈ 0, and a path in S5

>0 should be carefully chosen to connect x(0) and
the new x(18) such that γ(l) never become negative on the path.

Example 3: adding an eigenfrequency

In Fig. 5, we reverse the process in Example 2 to showcase an example of the adding algorithm. To be more specific, we start
with the granular chain with

• radii r̃ = (0.9839, 0.9295, 0.9672, 1.1627, 1.2108)

• springs γ̃ = (0, 0.6050, 0.6792, 2.0333, 1.0924)

• spectrum Λ : (1.5483, 1.0702, 0.7542, 0.4781, 0.2987).
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Extending the image point in S4
>0 to S5

>0 by adding a small number between the second and the third component, we put the
eigenvalue λ2 = 1.3549 back to the spectrum and compute the corresponding matrix H . At the same time, we add a bead with
large r6 and γ6 = λ2

4
3ρπr

3
6 to the end of chain so that it can be a good approximation to the system to be solved from H .

As Fig. 5 illustrates, eventually we restore the starting system in Example 2 with

• radii rj = 1 for 1 ≤ j ≤ 6

• springs γj = 1 for all 2 ≤ j ≤ 6
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FIG. 5: Top row: radii and springs in granular chain systems; middle row: masses and spring coefficients in the linearized systems; bottom:
image point in the space Sn−1

>0 and the spectrum. Similar to the previous figure, but now for the case of adding an eigenfrequency to the
system.

V. WAVE DYNAMICS IN ISOSPECTRAL GRANULAR CHAIN

A. Linear regime

We now evaluate wave transmission characteristics of isospectral granular chains. Using the state-space approach [32], we
calculate the transmission gain as a function of driving frequency ω. Let the dynamic disturbance Fd be applied to the first bead
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of the system. To measure the force output, FN at the other end of the system, we write the equations of motion as follows

ψ̇ = A1ψ +A2Fd, FN = A3ψ +A4Fd (21)

where,

ψ =



z1

...
zn
ż1

...
żn


;A1 =

(
0 I

M−1B 0

)
;A2 =



0
...
0

1/m1

...
0


;A3 =



0
...

Kn+1

0
...
0



T

;A4 = 0

For the isospectral granular chains, NS-1 and NS-2, discussed in Example 1, we linearize their dynamics. Then we solve the
equation (21) using the Bode function in MATLAB to obtain transmission gain (FN/Fd) as shown in Fig. 6. We observe that the
transmission characteristics of both resulting linearized systems are very similar. This is an interesting observation as it indicates
that an ordered chain (NS-1) can present very similar response characteristics to an apparently disordered chain (NS-2) in terms
of transmission gain for an elastic wave through the structure. Therefore, this opens up the possibility of constructing a whole
family of disordered granular systems with similar wave transmission characteristics, as was theoretically explained through the
method of the previous section.
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FIG. 6: Similar transmission gains for two isospectral granular chains, ordered NS-1 (left) and disordered NS-2 (right), when the dynamics is
linearized.

B. Nonlinear regime

Here we consider the nonlinear dynamics of two granular chain systems (NS-1) and (NS-2) whose linearized models, denoted
by (S-1) and (S-2), are isospectral. In order to study the dynamics of a linear system such as (S-1) or (S-2), it suffices to
consider its eigenmodes {vj cos(ωjt)}1≤j≤n where Gvj = M1/2vj is an eigenvector of H with the eigenvalue ω2

j . Since
any initial position of the system can be decomposed as some combination of the eigenmodes and each eigenmode solves the
system individually, the exact evolution of the system at any time is available. If the two systems (S-1) and (S-2) are isospectral,
their corresponding matrices H will have probably different eigenvectors but the same eigenvalues. Thus, eigenmodes of these
two systems may have different profiles but the same frequencies. Suppose a granular chain starts with an initial state that has
amplitudes small enough at all bead locations. Then, the evolution up to a finite time can be approximated by that of its linearized
model, which is explicitly solved by its eigenmodes and decomposed in the form of a linear superposition. As we increase the
strength of the initial perturbation, the nonlinearity gradually becomes apparent in both systems and the dynamics of the two
isospectral granular chains become different.

In Fig. 7, we consider two generalized granular chains (NS-1) and (NS-2), which are just the starting and resulting systems in
Example 1. By construction, these two systems have the same eigenfrequencies

ω = {1.2603, 1.2276, 1.1737, 1.0999, 1.0087, 0.9042, 0.7922, 0.6812, 0.5833, 0.5140}
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FIG. 7: In the top left (right) panel, we show the time evolution of the first bead in the granular chain NS-1 (NS-2) with a initial perturbation
of strength δ = 0.1. In the bottom panels, the initial perturbation has been increased such that δ = 2, clearly showcasing the differences in
the anharmonic vibration between the linearly isospectral chains. The dotted line illustrates the evolution of the same initial perturbation in the
linearized system.

for their linearized models (S-1) and (S-2). If we excite each of these two systems with a small perturbation that has the form
δv2 where v2 is the eigenmode for ω2 = 1.2276 and ‖v2‖2 = 1, the system will almost follow that eigenmode to evolve
periodically. This trend can be seen in the top panels of Fig. 7 when δ = 0.1 � 1. As the perturbation becomes stronger, the
time evolution of each system starts to deviate from a single eigenmode (or more generally a superposition of eigenmodes) in
terms of both its period and amplitude. We can observe this phenomenon in the bottom panels of Fig. 7, where δ = 2.

For a more systematic study of the perturbation in δ, we seek time-periodic solutions to equation (11) with frequency ω and
use the new time variable τ = ωt, making equation (11) look like:

mjω
2 ∂

2

∂τ2
zj = kj(zj−1 − zj + dj)

p
+ − kj+1(zj − zj+1 + dj+1)p+ − γjzj (22)

Then we consider the expansions of the frequency ω = ω(1) + δω(2) + δ2ω(3) +O(δ3) and the solution zj = δz
(1)
j + δ2z

(2)
j +

δ3z
(3)
j + O(δ4) in small parameter δ. Substitute these expressions into equation (22) and combining terms with the same order

to obtain:

mj(ω
(1))2 ∂

2

∂τ2
z

(1)
j = Kj(z

(1)
j−1 − z

(1)
j )−Kj+1(z

(1)
j − z

(1)
j+1)− γjz(1)

j , (23)

mj((ω
(1))2 ∂

2

∂τ2
z

(2)
j + 2ω(1)ω(2) ∂

2

∂τ2
z

(1)
j ) = Kj(z

(2)
j−1 − z

(2)
j )−Kj+1(z

(2)
j − z

(2)
j+1)− γjz(2)

j

+Qj(z
(1)
j−1 − z

(1)
j )2 −Qj+1(z

(1)
j − z

(1)
j+1)2

(24)

where Qj = 1
2p(p − 1)kjd

p−2
j . The limiting frequency ω(1) in equation (23) is what we have computed earlier by solving

equation (12). Here we write z(1) = Z(1)eiτ +Z(1)e−iτ with Z(1) being the eigenmode for ω(1) in equation (11).
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Being interested in the leading-order corrections ω(2) and z(2)
j , we rewrite equation (24) as follows:

−mj(ω
(1))2 ∂

2

∂τ2
z

(2)
j +Kj(z

(2)
j−1 − z

(2)
j )−Kj+1(z

(2)
j − z

(2)
j+1)− γjz(2)

j

= 2ω(1)ω(2)mj
∂2

∂τ2
z

(1)
j − [Qj(z

(1)
j−1 − z

(1)
j )2 −Qj+1(z

(1)
j − z

(1)
j+1)2]

(25)

where the right hand side has eiτ and e2iτ terms. By projecting equation (25) to the span of z(1), we notice
2ω(1)ω(2)〈z(1),Mz(1)〉 = 0 hence ω(2) = 0. Using the ansatz z(2) = Z(2)e2iτ +Z(2)e−2iτ + Y (2), we obtain

mjω
2
14Z

(2)
j +Kj(Z

(2)
j−1 − Z

(2)
j )−Kj+1(Z

(2)
j − Z

(2)
j+1)− γjZ(2)

j = −Qj(Z(1)
j−1 − Z

(1)
j )2 +Qj+1(Z

(1)
j − Z

(1)
j+1)2 (26)

Kj(Y
(2)
j−1 − Y

(2)
j )−Kj+1(Y

(2)
j − Y (2)

j+1)− γjY (2)
j = −2Qj |Z(1)

j−1 − Z
(1)
j |

2 + 2Qj+1|Z(1)
j − Z

(1)
j+1|

2 (27)

where Z(2) and Y (2) can be solved from equation (26) and equation (27), respectively. Moreover, assuming z(3) = Z(3)e3iτ +

Z(3)e−3iτ + Y (1)eiτ + Y (1)e−iτ and looking at the eiτ terms of order O(δ3), we have the following equation

2ω(1)ω(3)mjZ
(1)
j = −mj(ω

(1))2Y
(1)
j −Kj(Y

(1)
j−1 − Y

(1)
j ) +Kj+1(Y

(1)
j − Y (1)

j+1)− γjY (1)
j

−2Qj [(Z
(1)
j−1 − Z

(1)
j )(Y

(2)
j−1 − Y

(2)
j ) + (Z

(1)
j−1 − Z

(1)
j )(Z

(2)
j−1 − Z

(2)
j )]

+2Qj+1[(Z
(1)
j − Z

(1)
j+1)(Y

(2)
j − Y (2)

j+1) + (Z
(1)
j − Z

(1)
j+1)(Z

(2)
j − Z

(2)
j+1)]

−3Pj(Z
(1)
j−1 − Z

(1)
j )|Z(1)

j−1 − Z
(1)
j |

2 + 3δPj+1(Z
(1)
j − Z

(1)
j+1)|Z(1)

j − Z
(1)
j+1|

2

(28)

where Pj = 1
6p(p − 1)(p − 2)kjd

p−3
j . After projecting equation (28) to the span of Z(1), the terms containing Y (1) will

vanish and ω(3) will be obtained. Since ω(3) depends on the eigenmode z(1) for ω(1) and isospectral systems usually have
different eigenmodes, the leading-order correction to the eigenfrequency varies in isospectral systems, as illustrated in the left
panel of Fig. 8. This feature quantitatively illustrates the role of the nonlinearity in leading to deviations between the frequencies
of linearly isospectral systems.

Complementing this theoretical analysis, we numerically computed the time-periodic solutions to equation (11) as continu-
ations of linear eigenmodes in parameter δ (or the amplitude of the solution). In pratical, we solved solutions with period 2π
to equation (22) on a fixed domain [0, 2π). To validate the leading-order approximations of the frequencies for small δ, we
compared them with the frequencies of the numerical time-periodic solutions and found a good agreement between them (see
the middle and right panels of Fig. 8).
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FIG. 8: In the left panel, we illustrate ω(3), leading-order coefficients, for the frequencies ω(1) of different isospectral systems in Fig. 2 that
are indexed by l. In particular, l = 0 and l = 20 correspond to granular chains (NS-1) and (NS-2), respectively. The middle and right panels
show the changes of the fourth frequency ω4 (where ω(0)

4 = 1.0999) versus the growth of δ for (NS-1) and (NS-2), respectively. The solid line
is the frequency of the numerically computed time-periodic solution while the dashed line is the O(δ2) approximation of the frequency using
ω

(3)
4 .

An intriguing observation is that in all the isospectral systems we considered here, the leading-order corrections to the fre-
quencies are nonpositive, i.e., ω(3)

j ≤ 0 for 1 ≤ j ≤ n. Though it is not obvious from the expression of ω(3), the decreasing of
eigenfrequencies has been verified by following the continuation of the eigenmodes in parameter δ, as revealed in Fig. 9. We
note that this is a typical scenario among granular chains since similar features are observed in other granular chains [33, 34].
We attribute this feature to the effectively self-defocusing nature of the nonlinearity (see also, e.g., the relevant asymptotic cal-
culation of [35] in the simpler case of homogeneous granular crystals). On the other hand, though the natural frequencies of
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isospectral granular chains in Fig. 9 tend to decrease differently, breaking down the equivalence inherited from the linear limit,
there can also be quantitative similarities in the change of their frequencies. For example, while the isospectral systems in Fig. 2
are quite different in parameters, their changes in eigenfrequencies differ slightly before δ ∼ O(1) (see Fig. 8 and Fig. 9). Due to
the implicit relationship between the parameters of the isospectal map and the eigenmodes of isospectral systems, exploring the
possibility of enhancing the connection between isospectral systems in the nonlinear regime remains a substantial, yet important
challenge worth considering in the future.
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FIG. 9: Here we first numerically find solutions to equation (22) with different ωj and δ ∈ [0, 2]. Then the left panel shows the change of
each frequency ω in the granular chain (NS-1) (middle panel for (NS-2)) as the amplitude of the solution is increased. We observe that all the
frequencies for both systems tend to decrease as δ increases. In the right panel, we draw the differences between the frequencies of (NS-2) and
(NS-1), i.e., ∆ω = ω|(NS−2) − ω|(NS−1), over the growth of δ.

VI. CONCLUSIONS & FUTURE CHALLENGES

In this study, we explored the dynamics of granular chains that are isospectral in their linear limit. Such systems have shown
twofold advantages. First, we achieve considerable freedom in constructing isospectral systems by relying on lumped mass
models. Second, we can easily introduce nonlinearity in the system in order to study its effect (such as frequency softening)
on the system dynamics. We discussed various spectral transformation schemes in this context, however, we found that the
continuous transformation scheme ensures better control over system parameters as opposed to popular factorization techniques
such as Cholesky and QR decomposition used in supersymmetric frameworks. We enhanced this spectral transformational
scheme by adding the functionality of adding/removing eigenfrequencies of choice. We showed that the entire framework thus
allows us to tailor the spectrum details, and construct broad classes of isospectral physical systems, ranging from ordered to
seemingly disoredered granular chains.

In terms of the dynamics, we observed that transmission gain is preserved under the spectral transformation scheme we used.
For example, an ordered dimer granular chain showed similar transmission characteristics as that of a disordered granular chain
isospectral to the former. This indicates new pathways of constructing disordered systems preserving Bragg band-gaps, which are
formed due to periodicity in the medium. As the strength of nonlinearity grows, either the amplitude of the solution increases or
the precompression decreases, the linear spectrum will be distorted and isospectral systems can lead to quite different dynamics.
In particular, a typical scenario is that the natural frequencies of different isospectral granular chains will decrease differently
when the amplitude of the solution increases. However, the symmetry of being isospectral may still be of value (and produce
quantitatively proximal variations) for small amplitude excitations.

Given the smooth transitions of the granular system’s parameters calculated from the continuous isospectral flow method,
we expect to realize the suggested isospectral systems in future experiments. On the theoretical side, it is relevant to develop
quantitative diagnostics for identifying how nonlinearity effects lead to a deviation from the identical spectra of linearly
isospectral systems. Furthermore, a deeper (and more difficult) question would be whether there exist some analogies or
generalizations of these notions for genuinely nonlinear systems, perhaps borrowing ideas from the theory of inverse scattering
transforms and associated Lax pair problems. The outcome of these future studies will be reported in the authors’ upcoming
publications.
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APPENDIX: PROOFS OF REMARKS AND LEMMAS

Proof of Remark 1:

Proof. The first two conditions are straightforward to show and we will only prove (A3).
In order to prove the positive definiteness of H , it suffices to show B = GHG is positive definite. Thanks to the explicit

expression of B, we observe that B is a symmetric diagonally dominant real matrix with nonnegative diagonal entries, which
implies thatB is positive semidefinite. On the other hand, it can be shown by induction that det(B) = (

∏n+1
j=1 Kj)(

∑n+1
i=1

1
Ki

) >
0. As a result, B is positive semidefinite and it does not have a zero eigenvalue thus it must be positive definite.

Proof of Remark 2:

Proof. For a spring-mass system with masses (m̃1, m̃2, ..., m̃n) and spring constants (K̃1, K̃2, ..., K̃n+1), its stiffness matrix B̃
satisfies

B̃


1
1
...
1
1

 =


K̃1

0
...
0

K̃n+1

 .

Let G̃ = M̃1/2 and g̃ = (g̃1, g̃2, ..., g̃n)T = G̃(1, 1, ..., 1)T where M̃ is the mass matrix. If the spring-mass system has H̃ as its
associated matrix, then B̃ = G̃H̃G̃ and

H̃


g̃1

g̃2

...
g̃n−1

g̃n

 = H̃G̃


1
1
...
1
1

 = G̃−1


K̃1

0
...
0

K̃n+1

 =


K̃1

g̃1
0
...
0

K̃n+1

g̃n

 . (29)

Since H̃ is positive definite, there exists a unique g̃ = H̃−1(α, 0, ..., 0, β)T for any α > 0 and β > 0. It can be shown that g̃ will
be a positive vector as long as α and β are positive. Then the masses and the spring constants of the system can be computed
from M̃ = G̃2 and B̃ = G̃H̃G̃.

On the positivity of g̃: Since all off-diagonal entries of H̃ are negative and every eigenvalue of H̃ is positive, H̃ is an invertible
M-matrix. By the properties of M-matrix, the entries of H̃−1 are all nonnegative. Thus g̃ = H̃−1(α, 0, ..., 0, β)T will always
be a nonnegative vector. In fact, if both α and β are positive, we can show g̃ can not have any zero entry due to the fact that all
off-diagonal entries of H̃ are negative. By contradiction, if g̃j = 0 for 1 < j < n, then H̃(j, j− 1)g̃j−1 + H̃(j, j)g̃j + H̃(j, j+

1)g̃j+1 = H̃(j, j − 1)g̃j−1 + H̃(j, j + 1)g̃j+1 = 0 yields g̃j−1 = g̃j+1 = 0 since g̃ is nonnegative and subdiagonals of H̃ are
negative. If g̃1 = 0 or g̃n = 0, we have α = H̃(1, 2)g̃2 ≤ 0 < α or β = H̃(n, n − 1)g̃n−1 ≤ 0 < β, which is impossible.
Therefore, we can always obtain a positive solution for g̃ given α > 0 and β > 0.

Proof of Lemma 2:

Proof. By direct calculation, we can show ∂(f ,g)
∂(r̃,γ̃) =

(
J11 J12

J21 J22

)
where

• J11 = ∂f
∂r̃ is an n× n tridiagonal matrix.

• J12 = ∂f
∂γ̃ is an n× (n− 1) matrix. Its first row is zero while the rest (n− 1) rows form a diagonal matrix.

• J21 = ∂g
∂r̃ is an (n− 1)× n bidiagonal matrix.

• J22 = ∂g
∂γ̃ = 0(n−1)×(n−1).
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Thus |∂(f ,g)
∂(r̃,γ̃) | = det

(
L11 J12

J21 J22

)
where L11 =


∂f1
∂r̃1

∂f1
∂r̃2

0 ... 0
0 0 0 ... 0
... ... ... ... ...
0 0 0 ... 0

.

∂f1

∂r̃1
:= − 3

4πρ
[
1

3
W
r̃1(r̃

1
3
2 + 8(r̃1 + r̃2)

4
3 + 8r̃

1
3
2 (r̃1 + r̃2)

r̃
11
3

1 (r̃1 + r̃2)
4
3

+
3γ1

r̃4
1

] (30)

∂fj
∂r̃j

:= − 3

4πρ
[
1

3
W

r̃j(
r̃

1
3
j−1

(r̃j+r̃j−1)
4
3

+
r̃

1
3
j+1

(r̃j+r̃j+1)
4
3

) + 8(
r̃

1
3
j−1

(r̃j+r̃j−1)
1
3

+
r̃

1
3
j+1

(r̃j+r̃j+1)
1
3

)

r̃
11
3
j

+
3γ̃j
r̃4
j

], 2 ≤ j ≤ n− 1 (31)

∂fn
∂r̃n

:= − 3

4πρ
[
1

3
W
r̃n(r̃

1
3
n−1 + 8(r̃n + r̃n−1)

4
3 + 8r̃

1
3
n−1(r̃n + r̃n−1)

r̃
11
3
n (r̃n + r̃n−1)

4
3

+
3γ̃n
r̃4
n

] (32)

∂fj
∂r̃j−1

:=
3

4πρ

1

3
W

1

r̃
5
3
j r̃

2
3
j−1(r̃j + r̃j−1)

4
3

, 2 ≤ j ≤ n (33)

∂fj
∂r̃j+1

:=
3

4πρ

1

3
W

1

r̃
5
3
j r̃

2
3
j+1(r̃j + r̃j+1)

4
3

, 1 ≤ j ≤ n− 1 (34)

∂fj
∂γ̃j

:= − 3

4πρr̃3
j

, 2 ≤ j ≤ n (35)

∂gj
∂r̃j

:=
3

4πρ

1

3
W

9r̃j + 7r̃j+1

6r̃
13
6
j r̃

7
6
j+1(r̃j + r̃j+1)

4
3

, 1 ≤ j ≤ n− 1 (36)

∂gj
∂r̃j+1

:=
3

4πρ

1

3
W

7r̃j + 9r̃j+1

6r̃
13
6
j+1r̃

7
6
j (r̃j + r̃j+1)

4
3

, 1 ≤ j ≤ n− 1 (37)

(38)

If (r̃1, r̃2, ..., r̃n) are positive and γ1 ≥ 0, then ∂f1
∂r̃1

< 0, ∂f1
∂r̃2

> 0, ∂fj
∂γ̃j

< 0 for 2 ≤ j ≤ n, ∂gj
∂r̃j

> 0 and ∂gj
∂r̃j+1

> 0 for

1 ≤ j ≤ n− 1. Since det

(
∂f1
∂r̃1

∂f1
∂r̃2

∂g1
∂r̃1

∂g1
∂r̃2

)
< 0, it can be checked that |∂(f ,g)

∂(r̃,γ̃) | = det

(
L11 J12

J21 J22

)
6= 0.
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