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Previous studies of the first author and others have focused on low audible frequency (<1 kHz)

shear and surface wave motion in and on a viscoelastic material comprised of or representative of

soft biological tissue. A specific case considered has been surface (Rayleigh) wave motion caused

by a circular disk located on the surface and oscillating normal to it. Different approaches to identi-

fying the type and coefficients of a viscoelastic model of the material based on these measurements

have been proposed. One approach has been to optimize coefficients in an assumed viscoelastic

model type to match measurements of the frequency-dependent Rayleigh wave speed. Another

approach has been to optimize coefficients in an assumed viscoelastic model type to match the

complex-valued frequency response function (FRF) between the excitation location and points at

known radial distances from it. In the present article, the relative merits of these approaches are

explored theoretically, computationally, and experimentally. It is concluded that matching

the complex-valued FRF may provide a better estimate of the viscoelastic model type and parame-

ter values; though, as the studies herein show, there are inherent limitations to identifying visco-

elastic properties based on surface wave measurements. VC 2011 Acoustical Society of America.
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I. INTRODUCTION

An improved understanding of surface (Rayleigh) wave

motion on a viscoelastic material is essential to develop-

ments in many areas including medicine, geophysics, infra-

structure and manufacturing. For example, in medical

diagnostics research, linear surface and shear wave behav-

ior—phase speed and attenuation rate—on and in soft bio-

logical tissues have been studied extensively as this behavior

can be significantly altered by changes in the shear elasticity

and viscosity of the tissue caused by various pathologies,

trauma or remodeling.1–3 For soft biological tissues (e.g.,

comparing muscle with fat), the x-ray attenuation coefficient

varies only by a factor of 2,4 while MR relaxation times vary

by a factor of 3.5 The shear moduli, on the other hand, can

vary by more than a factor of 10, potentially providing

greater contrast.6–8

Understanding shear wave behavior is key to dynamic

elastography techniques that use magnetic resonance imag-

ing (MRI) or Doppler ultrasound (US) procedures to gener-

ate images of the shear wave field. Surface wave behavior,

measured via optical or Doppler US methods, has also been

studied for the same reasons. A thorough understanding of

surface and shear wave behavior on the same soft tissue

phantom can be useful in cross-validation of the various

elastography and surface measurement techniques, given

their similar dependence on shear viscoelastic properties.

A range of viscoelastic constitutive models have been

proposed to interpret shear and surface wave measurements.

These models attempt to relate measurable phenomena to

the underlying elasticity and damping of the material, both

of which are typically rate- (frequency-) dependent. Histori-

cally, many studies have often assumed a Voigt model of
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viscoelasticity. Recent studies have shown that such models

have limitations in their ability to accurately capture

dynamic phenomena over multiple time scales and/or with

broad spectral content, particularly for biological tissues and

tissue mimicking phantoms. One way to overcome such lim-

itations is through the use of more complex models with a

larger number of parameters to optimize; another approach

is via fractional order models.9–14 Fractional order visco-

elastic models have shown the potential to yield new disease

and treatment specific parameters that more effectively pre-

dict underlying changes in tissue associated with developing

pathology, such as liver cirrhosis and breast cancer. As an

example, in Ref. 14 a relatively simple power law relation-

ship was fit to the complex shear modulus of human breast

tissue and tumors measured by magnetic resonance elastog-

raphy. The results, when plotted as the fractional power

exponent versus the fractional order attenuation, separated

benign from malignant tumors with an increase in specificity

and sensitivity.

In previous studies of the first author of the present arti-

cle15,16 there has been an emphasis on understanding the sur-

face wave field created in a material like biological tissue by

canonical vibratory sources. In Ref. 15, a new analytical so-

lution was derived for the problem of surface wave genera-

tion on a linear viscoelastic half-space caused by a finite

rigid circular disk located on the surface and oscillating nor-

mal to it. While the motivation of the work was to better

understand surface wave propagation in biological tissue, the

solution approach taken was an incremental advancement of

theoretical work reported in seminal articles in the geophy-

sics literature.17,18 The improved solution was tested experi-

mentally using a viscoelastic phantom with material

properties comparable to biological soft tissue. Some agree-

ment could be achieved over a limited frequency range

(20–100 Hz) using a Voigt model. In a more recent study

revisiting the same canonical system on a different phantom

material it appeared that an improved match could be

achieved over a broader frequency range by using a frac-

tional order viscoelastic model.19

In these studies of the first author, the approach was to

measure the complex-valued frequency response function

(FRF) between the excitation location and points at known

radial distances from the excitation location. The FRF has

embedded in it frequency-dependent information about both

surface wave phase speed and attenuation that can be used to

directly estimate the real and imaginary parts of the complex

shear modulus (storage and loss shear moduli). The coeffi-

cients in an assumed viscoelastic tissue model type can then

be optimized to minimize the differences in the predicted

and experimentally determined values of the complex shear

modulus. Another approach taken by others has been to

directly estimate the frequency-dependent surface (Rayleigh)

wave speed from experimental data and then to optimize the

coefficients in an assumed viscoelastic model type to mini-

mize the difference between the measured and predicted val-

ues of wave speed.3,20–22 In an analogous manner, shear
wave speed dispersion derived from elastography techniques

has been used to estimate the shear viscoelasticity with an

assumed viscoelastic model type.23–29 In the present article,

the relative merits of these approaches are explored theoreti-

cally, computationally, and experimentally.

II. VISCOELASTIC CONTINUUM: GOVERNING
EQUATIONS

For an isotropic, homogenous, viscoelastic compressible

medium one can use the following formulation of the equa-

tion of motion for small perturbations about an operating

point

ðkþ lÞrr � uþ lr2u ¼ q
@2u

@t2
: (1)

Here, u is the displacement vector, q is the density of the

medium, @/@t denotes a derivative with respect to time, r is

the spatial Laplacian operator dependent upon the chosen

coordinate system, and k and l are the Lame constants of

the medium. For a linear viscoelastic Voigt material model,

the rate-dependent Lame “constants” are expressible

as k(t)¼ k0þ k1@/@t and l(t)¼ l0þ l1@/@t where k0, k1, l0,

and l1 are coefficients of volume compressibility, volume

viscosity, shear elasticity, and shear viscosity, respectively.30

Other shear viscoelastic models will lead to different rate-

dependence relations.

With regard to l, it has been observed in many materi-

als that the simple two-element Voigt model for shear vis-

coelasticity (l0, l1) does not accurately capture material

shear dynamic behavior, in terms of its experimentally-

measured response to various elementary excitation wave-

forms, such as step inputs or periodic or random inputs

with broad spectral content. More complex arrangements of

multiple elastic (springs) and viscous (dashpot) components

may then be employed empirically in order to more closely

match what is observed. For example, the Standard Linear

Solid (SLS) Model, also known as the Kelvin or Zener

model, consists of a parallel combination of a Maxwell ele-

ment (spring and dashpot in series) with a spring. The

three-element SLS model has more flexibility in represent-

ing dynamic viscoelasticity as compared to the Voigt

model.7 Instead of increasing the constitutive model com-

plexity by increasing the number of components that com-

prise it, an alternative is to consider that the material may

exhibit rate-dependent shear deformation that is best

described by a single element, comprised of two constants,

la and a, whose behavior lies somewhere between Hookean

solid and Newtonian fluid. Specifically, fractional order

viscoelasticity (a springpot) can be specified as shown in

the second term of the following:

l ¼ l0 þ la
@a

@ta
; 0 < a � 1: (2)

Equation (2) is referred to as a fractional order Voigt model

for a< 1. While such a mathematical construction may seem

to lack physical meaning, it can be shown that this type of

relation results asymptotically when using a ladder-like frac-

tal arrangement of integer-order elastic and viscous compo-

nents, as depicted in Fig. 1.31 Indeed, such an arrangement
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might be rationalized on the grounds that it represents multi-

scale rate-dependent stress-strain interactions that one would

inherently expect in some materials with complex multiscale

cellular and extracellular structure, such as biological tis-

sues. Furthermore, suitably defined fractional derivatives do

not pose significant difficulty mathematically for well-

conditioned functions. [In this paper we have chosen to use

the Weyl definition of the fractional order derivative, which

for harmonic functions such as f(t)¼ ejxt, has the property

that @a=@ta ejxt½ � ¼ jxð Þaejxt:] The expression in Eq. (2) is

still linear in nature and thus all rules and techniques

afforded such relations, such as the validity of superposition,

reciprocity, the Laplace and Fourier transforms, with associ-

ated transfer and frequency response functions, are all still

valid.31–34 In the Laplace (s) and frequency (jx) domains

where j ¼
ffiffiffiffiffiffiffi
�1
p

and x is the circular frequency, Eq. (2)

respectively becomes

l ¼ l0 þ laðsÞa; (3a)

l ¼ l0 þ laðjxÞa: (3b)

Note, a significant attribute of such fractional representations

is that the temporal response takes on characteristics of

power-law behavior as opposed to the exponential response

that one obtains with the conventional Voigt representation.

A power-law response in fact has been observed in a number

of biological and nonbiological materials, further motivating

this type of model.10,11

Also note that, once one is in the frequency domain, we

have l(x)¼lR(x)þ j lI(x) (storage and loss shear moduli)

and both lR and lI are independent of whether the time de-

rivative part of the Voigt model is of integer or fractional

order. They are equal to l0 and xl1, shear elasticity and

shear viscosity multiplied with circular frequency, if a con-

ventional integer order Voigt model is used. In the case of a

fractional order Voigt model since (jx)a¼xa(cos[ap/2]

þ j sin[ap/2]) the storage modulus and loss modulus are

defined, respectively, as

lR ¼ l0 þ lax
a cos

p
2

a
� �

; (4a)

lI ¼ lax
a sin

p
2

a
� �

: (4b)

Alternatively, the SLS model yields

lR ¼
l0l

2
x þ x2l2

1 l0 þ lxð Þ
l2

x þ x2l2
1

; (5a)

lI ¼
xl2

xl1

l2
x þ x2l2

1

: (5b)

Here l0 denotes the static stiffness, l1 denotes the viscous

damping coefficient multiplied with the first order time de-

rivative of the displacement (thus a is equal to 1), and lx

denotes the dynamic stiffness, which is only effective when

the loading has a non-zero time derivative.

Regardless of whether an “integer order” or fractional

order Voigt model or a Standard Linear Solid model is used,

wave motion in the infinite three-dimensional viscoelastic

medium consists of a superposition of dilatational and shear

wave displacements, u¼uPþuS, respectively. For the semi-
infinite halfspace problem an additional surface (Rayleigh)

wave uSu will exist.

III. SURFACE WAVE PROPAGATION ON A
HALF-SPACE DUE TO A SURFACE SOURCE

In Ref. 15, a simplified analytical solution was derived

for Rayleigh wave propagation on the surface of an isotropic

homogeneous viscoelastic half-space caused by normal force

excitation over a circular region of radius “a” on the surface

of amplitude per unit area Pin with harmonic time depend-

ence ejxt as depicted in Fig. 2. The analytical solution is

uz

Pin

¼ � 2a

l
J1ðpakpÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 1

p
F0oð�pÞ g2K0ðjprkpÞejxt; (6a)

where

F0oð�pÞ ¼ @Fo

@f

����
f¼�p

; (6b)

FoðfÞ ¼ 2f2 � g2
� �2�4f2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � g2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � 1

q
; (6c)

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 2lÞ=l

p
; (6d)

kp ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q=ðkþ 2lÞ

p
: (6e)

FIG. 1. A tree arrangement of springs and dashpots (left) resulting in a frac-

tional order element, called a springpot (middle). Schematic representation

of a fractional order Voigt model (right); the dashpot is replaced with a

springpot.

FIG. 2. Ideal viscoelastic halfspace with finite surface source.
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Here, uz is out-of-plane surface displacement, p is the ratio

of compression wave speed to surface wave speed and is a

root of the function F0 that is associated with Rayleigh

wave motion, kp is the compression wave number, r is the

radial distance from center of the driving disk, J1 is

the Bessel function of the first kind (order 1), and K0 is the

modified Bessel function of the second kind (order 0); K0

can also be written in terms of Bessel functions of the first

and second kind (order 0) such as K0 xð Þ ¼ p=2ð Þi J0 ixð Þf
þiY0 ixð Þg. Equation (6c) links compression, shear and sur-

face wave behavior to material viscoelastic properties; the

roots of this equation yield compression, shear and surface

wave numbers, which are complex-valued for a viscoelastic

material, due to its rate-dependent stress-strain behavior.

Shear wave speed at frequency x, given by x/Re[ks]

where ks¼x/cs is the complex valued shear wave number, is

related to the real (storage) and imaginary (loss) parts of the

shear modulus, lR and lI, respectively, and the material den-

sity q as35

x
Re½ks�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

q
l2

R þ l2
I

lR þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

R þ l2
I

p
s

: (7)

Complex-valued surface (Rayleigh) wave number kSu can be

related to ks through the following

kSu ¼ ks
p

g
: (8)

In soft biological tissues, or cases where |k| � |l| we have

that |g/p| � 0.955; but, due to the dispersive nature of visco-

elastic materials there can be some slight variation of this ra-

tio with frequency.

Note, the solution provided in Eq. (6a),15 derived from

the seminal works of Miller and Pursey17,18 indicates that

only Rayleigh waves are present on the surface of the half

space in the steady state. However, other theoretical treat-

ments have indicated that effects from compression and

shear waves can also be felt at the surface via “head

waves,” at least under transient excitation conditions.36–38

Given that all of this is linear system theory, it stands to

reason that even in the steady state the effect of these head

waves should be present, which may complicate the fol-

lowing analysis.

IV. ESTIMATING VISCOELASTIC PROPERTIES FROM
SURFACE WAVE MEASUREMENTS

A. Approach 1: Measurement of surface wave speed
as a function of frequency

The real part of the Rayleigh wave speed, or in effect

the ratio of the circular frequency to the real part of the

Rayleigh wavenumber Re[kSu], can be estimated from exper-

imental measurements of the response to normal excitation3

as described in Sec. III, as

x
Re½kSu�

¼ x Dr=D/j j; (9)

where Dr is the distance of two measuring positions along a

radial line away from the source of surface waves, D/ is the

wave phase change over this distance, and x is the circular

frequency in radians/second. Having measured phase

speed at multiple frequencies via this approach, assuming

|p/g|¼ 1.05, and by assuming a specific viscoelastic model

type that expresses lR(x) and lI(x) in terms of unknown

coefficients, one can then use Eq. (7) to optimize the values

of these unknown coefficients to minimize the least square

error between measured Re[kSu(x)] and calculated

Re[kSu(x)]. Given the nonlinear dependence of the value in

Eq. (7) with respect to lR(x) and lI(x) it is expected that

multiple local optima may exist and care must be taken in

terms of an initial guess in the optimization routine. Theoret-

ical, numerical and experimental example cases applications

of this approach are described in the following Secs. V–VII

below.

B. Approach 2: Measurement of the frequency
response function

Measurement of the complex-valued frequency response

function (FRF) between the driven oscillating disk and nor-

mal motion at a radial distance r from the center of the disk

is accomplished as described in Sec. VII below. Referring to

Eq. (6) and taking the ratio of the motion at the radial loca-

tion r to that on the disk at radial location “a,” we have

FRF ¼ uzðrÞ
uzðaÞ

¼ K0ðjprkpÞ
K0ðjpakpÞ

¼ K0ðjrkSuÞ
K0ðjakSuÞ

: (10)

Note, under the assumption that jakSuj j � 1=4 and using

Bessel function asymptotic limits we have that

FRF ¼ uzðrÞ
uzðaÞ

�
ffiffiffi
a

r

r
ejkSuða�rÞ: (11)

Asymptotic Eq. (11) clearly shows the geometric attenuation

of the ratio of displacement amplitudes depending on radial

distance r raised to the half power. Attenuation due to vis-

cosity will manifest in the imaginary part of kSu. In approach

2, the real and imaginary part of measured FRF (produced

analytically, numerically, or experimentally) are fit with

Eq. (10) in a least square error sense. First p is calculated

from the fitting. From Eq. (6c) g is solved. Multiple solutions

exist in Eq. (6c), but the only g that makes sense is the one

whose real part is slightly smaller in amplitude than that of p
as the surface wave speed is a slightly less than the shear

wave speed. The complex shear modulus is calculated from

Eq. (6d). Finally, the viscoelastic parameters (except for the

static shear modulus l0 for each model assumed to be meas-

ured statically) are estimated by fitting lR, lI/x based on the

assumed viscoelastic model, such as fractional Voigt

[Eqs. (4a) and (4b)], or SLS [Eqs. (5a) and (5b)]. Here, lI/x
is listed instead of lI as a way to quickly assess the appropri-

ateness of the integer Voigt model (lI/x independent of

frequency). And, l0 is chosen to be the actual value used

in the analytical or numerical study or statically measured

in the experimental study. Theoretical, computational and
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experimental example cases studies are described in Secs.

V–VII below.

C. Initial comparison of approaches 1 and 2

The inherent difference between the two approaches

described above is that, while the 1st approach only uses the

measured surface wave speed as a function of frequency, the

2nd approach effectively uses both the surface wave speed

and attenuation as a function of frequency. Thus, one may

expect that the 2nd approach will provide more information

in terms of both helping to determine the appropriate visco-

elastic model type, as well as the optimal coefficient values

for that type. However, in terms of practical implementation,

it may be more difficult to acquire accurate measurements of

attenuation, especially given that the above analyses are pre-

dicated on the fictional notion of an infinite halfspace. Actual

applications will involve finite boundaries, and the possibil-

ity of the contamination of the FRF with other wave types,

e.g., compression waves, and multi-path reflections. Of

course, these complexities may also affect the accuracy of

approach 1.

V. ANALYTICAL CASE STUDIES

A. Optimal model identification procedures

With each of the material cases depicted in Table I, con-

sider a halfspace of a linear viscoelastic isotropic material

with density q¼ 1000 kg/m3. Consider that surface wave ex-

citation is initiated via a disk of radius a¼ 1 cm over the fre-

quency range of 100–600 Hz as envisioned in Sec. III and

that phase speed is determined per Eq. (9), and the FRF is

determined per Eq. (10). The FRF is plotted for two frequen-

cies in Fig. 3. Approaches 1 and 2 of the previous section are

used to identify the optimal coefficients for an assumed

viscoelastic model using response data at 11 frequencies

spaced in 50 Hz increments from 100 to 600 Hz.

Specifically, per approach 1, it is assumed that l0 is al-

ready known from a static indentation measurement. Using

Eq. (7) and assuming a Voigt model, in MATLAB
TM

the crea-

teOptimProblem and GlobalSearch commands are used to

optimize the estimate of l1 to minimize the error between

TABLE I. Viscoelastic material models used in analytical and numerical

case studies.

Voigt (a¼ 1) Fractional Voigt SLS (a¼ 1)

l0 (kPa) 23.9 14.0 14.0

la (Pa.sa) 6.60 140 12.0

– a¼ 0.60 lx¼ 16.0 kPa

FIG. 3. Theoretical Studies. FRF at

x/2p¼ 100 and 600 Hz for (a) Voigt,

(b) fractional Voigt, and (c) SLS mate-

rial studies. Key: —, real part; - � -,

imaginary part. Material property values

given in Table I.
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measured and calculated phase speeds in a least square error

sense (summing the squares of the difference between the

calculated and measured phase speed at each frequency).

This processing is then repeated but instead assuming a Frac-

tional Voigt model or a SLS model. In the case of the Frac-

tional Voigt model, estimates of a and la are optimized. For

the SLS model assumption, estimates of lx and l1 are

optimized.

Per approach 2, it is also assumed that l0 is already

known from a static indentation measurement. First assum-

ing a Voigt model, the same MATLAB commands are used to

optimize an estimate of l1 to minimize the error between

measured and calculated lR(x) and lI(x)/x (summing the

squares of the difference between the calculated and meas-

ured values of lR(x) and lI(x)/x). In the case of the Frac-

tional Voigt model, estimates of a and la are optimized.

TABLE II. Estimated viscoelastic coefficients and residual error in analytical case studies.

Approach 1 Approach 2

Residual Error (�103) Residual Error (�103)

lR lI l lR lI l

Actual material: Voigt Actual material: Voigt

Voigt l0[kPa]

23.9

l1[Pa.s]

6.66

0 0.4 0.4 Voigt l0[kPa]

23.9

l1[Pa.s]

6.6

0 0 0

Fractional

Voigt

l0[kPa]

23.9

la[Pa.sa]

6.86

a
0.99

0.3 0.34 0.4 Fractional

Voigt

l0[kPa]

23.9

la[Pa.sa]

6.6

a 1 0 0 0

SLS l0[kPa]

23.9

lx[kPa]

741

l1[Pa.s]

6.5

1.4 0.028 1.4 SLS l0[kPa]

23.9

lx[kPa]

1e6

l1[Pa.s]

6.6

0 0 0

Actual material: Fractional Voigt Actual material: Fractional Voigt

Voigt l0[kPa]

14

l1[Pa.s]

6.4

27 14 30 Voigt l0[kPa]

14

l1[Pa.s]

5.62

27 8 29

Fractional

Voigt

l0[kPa]

14

la[Pa.sa]

141.7

a
0.59

0.2 0.3 0.4 Fractional

Voigt

l0[kPa]

14

la[Pa.sa]

140

a
0.6

0 0 0

SLS l0[kPa]

14

lx[kPa]

21.8

l1[Pa.s]

8.9

8 8 12 SLS l0[kPa]

14

lx[kPa]

11.6

l1[Pa.s]

9.69

2 25 5

Actual material: SLS Actual material: SLS

Voigt l0[kPa]

14

l1[Pa.s]

6

36 31 48 Voigt l0[kPa]

14

l1[Pa.s]

4.17

36 18 40

Fractional

Voigt

l0[kPa]

14

la[Pa.sa]

808

a
0.36

5 6 9 Fractional

Voigt

l0[kPa]

14

la[Pa.sa]

151

a
0.63

2.9 36 37

SLS l0[kPa]

14

lx[kPa]

16.1

l1[Pa.s]

12.08

0.3 0.2 0.4 SLS l0[kPa]

14

lx[kPa]

16

l1[Pa.s]

12

0 0

FIG. 4. Voigt material study. Best

fit Voigt, fractional Voigt, and SLS

models based on (a) Approach 1 and

(b) Approach 2. Key: x x x, actual

value; —, estimated value based

on Approach 1 x=Re kSu½ �ð Þ or

Approach 2 (lR and lI); 4 - - - 4,

best fit Voigt; h��������h, best fit

fractional Voigt; ^ - - - ^, best fit

SLS.
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Finally estimates of lx and l1 are optimized for the SLS

model assumption.

B. RESULTS AND DISCUSSION

Results of the best fits using approaches 1 and 2 are pro-

vided in Table II and in Figs. 4–6. Referring to Table II, it is

seen that approach 2 generally outperforms approach 1, min-

imizing error to machine tolerance when the appropriate

model type is selected. It may also be observed from the fig-

ures that, generally, being able to compare estimates of

lR(x) and lI(x)/x to measured values more clearly identi-

fies which viscoelastic model type is appropriate, relative to

comparing estimates of phase speed to measured values.

(Note, for the Voigt material model, approach 2 correctly

drives the fractional Voigt and SLS models to that of a Voigt

model by driving a to 1 and lx to the upper limit allowed in

the optimization routine, respectively.)

VI. NUMERICAL CASE STUDIES

A. FE simulation cases

The three material property cases of the previous section

are next simulated in a finite element (FE) environment

using harmonic analysis, except with the important caveat

FIG. 5. Fractional Voigt material

study. Best fit Voigt, fractional

Voigt, and SLS models based on (a)

approach 1 and (b) approach 2. Key:

x x x, actual value; —, estimated

value based on approach 1

x=Re kSu½ �ð Þ or approach 2 (lR and

lI); 4 - � - 4, best fit Voigt;

h��������h, best fit fractional Voigt;

^ - - - ^, best fit SLS.

FIG. 6. SLS material study. Best fit

Voigt, fractional Voigt, and SLS

models based on (a) approach 1 and

(b) approach 2. Key: x x x, actual

value; —, estimated value based on

approach 1 x=Re kSu½ �ð Þ or approach

2 (lR and lI); 4 - � - 4, best fit

Voigt; h�����h, best fit fractional

Voigt; ^ - - - ^, best fit SLS.
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that we no longer have an infinite half space. Rather, we

have a cylinder of material, as depicted in Fig. 7, with finite

boundaries. This can be treated as an axisymmetric problem

in FE analysis. A 4 node quadrilateral element in the

COMSOL
VR

4.2 structural mechanics module was used to

generate the FRF (displacement/displacement) shown in

Fig. 8. Studies with various element resolutions and other

types (e.g., plane triangular element) confirmed that we had

asymptotically reached a solution independent of element

size/type. (Complementary studies conducted in ANSYS

11.0 that matched the COMSOL results but are not presented

here, further verified the numerical approach taken.) While

the theoretical analysis of the previous section was for a disk

imparting a uniform pressure, a uniform displacement rather

than uniform pressure was imparted because: (1) differences

in FRFs between the two approaches appeared minimal, and

(2) uniform displacement loading is closer to the actual load-

ing in the experimental study in Sec. VII. In the FE solu-

tions, the following parameter values were held constant:

density q¼ 1000 kg/m3 and bulk modulus K¼ 2.6 GPa. The

viscoelastic coefficients of each model listed in Table I are

specified, per Eqs. (4a), (4b), (5a), and (5b), which relate

them to the complex shear modulus, l¼lRþ jlI, another

input parameter in the FE simulation.

Due to finite boundaries and possibly head wave effects

mentioned in the previous section, FE simulations do not

result in the same FRF responses predicted by theory.

FIG. 7. Experimental schematic for measurement of surface wave motion

caused by a surface source using a scanning laser Doppler vibrometer

(SLDV).

FIG. 8. Numerical studies. FRF at x/

2p¼ 100 and 600 Hz for (a) Voigt, (b) frac-

tional Voigt, and (c) SLS material studies.

Key: —, real part; - � -, imaginary part. Mate-

rial property values given in Table I.
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Likely, other wave types or wave reflections are present to

varying degrees at different radial distances, which will alter

predictions of the viscoelastic model based on approaches 1

and 2. Further analysis of the FE simulation data and calcu-

lation of best fit viscoelastic models per approaches 1 and 2

are conducted as described below.

B. Results and discussion

Results of the best fits using approaches 1 and 2 are pro-

vided in Table III and in Figs. 9–11. In comparing Figs.

9–11 (FEA) with Figs. 4–6 (theory), it becomes clear that

the matter of extracting the correct viscoelastic model type

and associated material property values based on surface

TABLE III. Estimated viscoelastic coefficients and residual error in Numerical Case Studies.

Approach 1 Approach 2

Residual Error (�105) Residual Error (�105)

lR lI l lR lI l

Actual material: Voigt Actual material: Voigt

Voigt l0[kPa] l1[Pa.s] 0 4.6 4.6 Voigt l0[kPa] l1[Pa.s] 0 0.02 0.02

23.9 81.7 23.9 6.94

Fractional Voigt l0[kPa] la[Pa.sa] a 0 4.6 4.6 Fractional Voigt l0[kPa] la[Pa.sa] a 0 0.02 0.02

23.9 81.7 1 23.9 6.94 1

SLS l0[kPa] lx[kPa] l1[Pa.s] 0.1 4.6 4.6 SLS l0[kPa] lx[kPa] l1[Pa.s] 0 0.02 0.02

23.9 1e6 81.7 23.9 1e6 6.86

Actual material: Fractional Voigt Actual material: Fractional Voigt

Voigt l0[kPa] l1[Pa.s] 0.23 5.7 5.7 Voigt l0[kPa] l1[Pa.s] 0.27 0.1 0.29

14 98.7 14 5.88

Fractional Voigt l0[kPa] la[Pa.sa] a 0.23 5.7 5.7 Fractional Voigt l0[kPa] la[Pa.sa] a 0.11 0.07 0.13

14 98.7 1 14 36.78 0.77

SLS l0[kPa] lx[kPa] l1[Pa.s] 0.10 5.7 5.7 SLS l0[kPa] lx[kPa] l1[Pa.s] 0.11 0.06 0.12

14 1e6 98.7 14 42 6.6

Actual material: SLS Actual material: SLS

Voigt l0[kPa] l1[Pa.s] 0.30 0.40 0.50 Voigt l0[kPa] l1[Pa.s] 0.36 0.26 0.45

14 9.3 14 5.42

Fractional Voigt l0[kPa] la[Pa.sa] a 0.32 0.11 0.35 Fractional Voigt l0[kPa] la[Pa.sa] a 0.13 0.23 0.27

14 9.7 0.1 14 75 0.67

SLS l0[kPa] lx[kPa] l1[Pa.s] 0.32 0.09 0.33 SLS l0[kPa] lx[kPa] l1[Pa.s] 0.12 0.17 0.21

14 21.5 61.7 14 26 7.2

FIG. 9. Voigt numerical study. Best

fit Voigt, fractional Voigt, and SLS

models based on (a) approach 1 and

(b) approach 2. Key: x x x, actual

value; —, estimated value based on

approach 1 x=Re kSu½ �ð Þ or approach

2 (lR and lI); 4 - � - 4, best fit

Voigt; h��������h, best fit fractional

Voigt; ^ - - - ^, best fit SLS.
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motion measurements is more challenging than the infinite

half-space theory would suggest. From approach 1 for the

Voigt and fractional Voigt cases, a Voigt model assumption

essentially yields the best fit as the fractional Voigt and SLS

optimizations converge to the Voigt case (a¼ 1 and lx

large). For the SLS case, the SLS model assumption fits the

phase speed well only from 100 to 300 Hz. This shows the

limitation of approach 1 and the complexity caused by the

finite boundary as the calculated phase speed based on Eq. (9)

is not that accurate. From approach 2, the best fit model is

usually the correct one except for the fractional Voigt case,

where the SLS model does slightly better. For the Voigt

model case, both the fractional Voigt and SLS models

converge to the Voigt model as seen from their respective

estimated parameters. For the SLS case, the SLS model is

the best fit as the residual error of the estimated shear modu-

lus relative to the actual shear modulus is the smallest.

VII. EXPERIMENTAL STUDY

A. Experimental approach

Surface wave experiments were conducted as depicted

in Fig. 7 on a silicone polymer, Ecoflex 00-10 (NuSil Tech-

nology, Carpinteria, CA), which had a density of 965 kg/m3

calculated through basic mass volume measurements of

small test specimens. While in liquid form, the material is

FIG. 10. Fractional Voigt numerical

study. Best fit Voigt, fractional

Voigt, and SLS models based on

(a) approach 1 and (b) approach 2.

Key: x x x, actual value; —, esti-

mated value based on approach 1

x=Re kSu½ �ð Þ or approach 2 (lR and

lI); 4 - � - 4, best fit Voigt;

h������h, best fit fractional Voigt;

^ - - - ^, best fit SLS.

FIG. 11. SLS numerical study. Best

fit Voigt, fractional Voigt, and SLS

models based on (a) approach 1 and

(b) approach 2. Key: x x x, actual

value; —, estimated value based on

approach 1 x=Re kSu½ �ð Þ or approach

2 (lR and lI); 4 - � - 4, best fit

Voigt; h��������h, best fit fractional

Voigt; ^ - - - ^, best fit SLS.
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poured into the container and then cures at room tempera-

ture. Once cured, the material is removed from the container

and mounted on a vibration isolated optics bench. A plexi-

glass disk, driven by a mechanical shaker (ET-132, Lab-

Works Inc., Mesa Costa, CA) that is supported by a separate

structure, is positioned on the surface of the phantom with a

sufficient preload to ensure contact during excitation. The

shaker is driven via an amplifier (Type 2076, Bruel & Kjaer,

Denmark) with a signal input from a dynamic signal ana-

lyzer (35670 A, Agilent Technologies, Santa Clara, CA).

The force and acceleration of the disk is measured with an

impedance head (288D01, PCB Piezotronics, Depew, NY),

and the out-of-plane velocity at discrete points on the surface

are measured using a scanning laser Doppler vibrometer

(SLDV) (PSV-400, Polytec, Irvine, CA). P-RETRO-250

glass beads (45–63 lm dia., Polytec, Irvine, CA) are spread

on and adhered to the semi-translucent phantom material to

aid in SLDV measurement. Scanning was along a line radi-

ally outward from the excitation over a distance of 50 mm

with a 1 mm increment and the measurement point closest to

FIG. 12. Experimental study. FRF

at x/2¼ 100, 200,…., 600 Hz. Key:

—, real part; - � -, imaginary part.

TABLE IV. Estimated viscoelastic coefficients and residual error in Experimental Studies.

Approach 1 Approach 2

Residual Errora Residual Error (�105)a

Re [Ksu] lR lI l

Voigt l0[kPa] l1[Pa.s] 66.19 Voigt l0[kPa] l1[Pa.s] 0.35 0.18 0.39

13.3 11.77 13.3 9.96

Fractional Voigt l0[kPa] la[Pa.sa] a 16.67 Fractional Voigt l0[kPa] la[Pa.sa] a 0.06 0.11 0.13

13.3 535 0.49 13.3 350.77 0.55

SLS l0[kPa] lx[kPa] l1[Pa.s] 17.19 SLS l0[kPa] lx[kPa] l1[Pa.s] 0.02 0.04 0.04

13.3 29.5 18.97 13.3 27.25 17.77

aHere, residual error is with respected to the calculated values of Re[Ksu] (Approach 1) and complex l (Approach 2), as the actual values and type of visco-

elastic model are unknown.
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the excitation was 5 mm from the rim of the plexiglass disk.

Measurement signals are recorded and the frequency

response function (FRF) between the output (vertical veloc-

ity of the surface points) and input (motion input of the disk)

is calculated by the dynamic signal analyzer. Measurements

of FRF (velocity/acceleration) are shown in Fig. 12. The

viscoelastic parameters estimation procedure here is essen-

tially the same as the one for FE simulation.

A static measurement of the phantom material stiffness

was made by indenting a steel sphere of diameter 9.525 mm

into the media. Indentation forces were measured for differ-

ent indentation depths using a force gauge (Model DPS,

Imada, Northbrook, IL). Indentation of the steel ball into the

semi-infinite medium was assumed to be a Hertzian contact

problem and the solution given by Timoshenko39 was used

as described in Meral et al.19 to estimate the static Young’s

modulus value, which could then be used to obtain an esti-

mate of l0.

B. Results and discussion

Results of the best fits using approach 1 and 2 are shown

in Table IV and Fig. 13. The phase speed estimated by

approach 1 is plotted in a narrower frequency range than that

by approach 2 as the phase speed measured between 100 Hz

and 200 Hz deviated too much from the normally expected

value. It is shown from Fig. 13(a) that by approach 1, a good

match to frequency-dependent phase speed is possible for

both the fractional Voigt and SLS model. This again leads to

the same conclusion as in Sec. V that matching phase speed

dispersion alone over an order or less of magnitude in fre-

quency probably does not discern which model type is

appropriate. While from Fig. 13(b), the more appropriate

model can be identified from lR/lI versus frequency even

though different models lead to almost the same fitting

curves for phase speed, lR, and lI/x. Thus one may be able

to use approach 2 to better assess which model type is

appropriate.

VIII. CONCLUSION

Two different approaches to identifying the type and

coefficients of a viscoelastic model of a material based on

surface wave measurements have been proposed. One

approach has been to measure the Rayleigh wave speed as a

function of frequency (i.e., wavelength as a function of fre-

quency) and then to optimize the coefficients in an assumed

viscoelastic model type to minimize the difference between

the measured and predicted values. Another approach is to

measure the complex-valued frequency response function

(FRF) between the excitation location and points at known

radial distances from the excitation location. (This does

require that one knows the size and location of the excitation

relative to the measurement points, information not neces-

sary for the first approach.) The FRF has embedded in it

frequency-dependent information about both surface wave

phase speed (i.e., wavelength) and attenuation; it can be used

to directly estimate the real and imaginary parts of the com-

plex shear modulus (storage and loss shear moduli). The

coefficients in an assumed viscoelastic tissue model type can

then be optimized to minimize the differences in the pre-

dicted and experimentally determined values of the complex

moduli. The relative merits of these approaches were

explored theoretically, computationally and experimentally.

While theoretical and experimental studies suggested that

approach 2 was more capable of distinguishing which type

of viscoelastic model was most appropriate, finite element

studies highlighted the complications that arise due to finite

boundary conditions and multiple wave types for both

approaches. There are inherent limitations to identifying

FIG. 13. Experimental study. Best

fit Voigt, fractional Voigt, and SLS

models based on (a) approach 1 and

(b) approach 2. Key: —, estimated

value; 4 - � - 4, best fit Voigt;

h��������h, best fit fractional Voigt;

^ - - - ^, best fit SLS.
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viscoelastic properties based on surface wave measurements.

The findings of this study on surface waves, in terms of the

merits of different approaches and limitations, are likely also

relevant to identification of viscoelastic models and proper-

ties based on shear wave imaging, given the close relation-

ship between the two wave types.
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